login
A303999
Numbers whose sum of divisors is the seventh power of one of their divisors.
1
1, 112890, 120054, 124338, 133998, 137058, 139962, 36705396, 39118548, 52166212, 4661585292, 4677211812, 4851457716, 4968055596, 6168611160, 6232929480, 6236525932, 6261521812, 6311227560, 6362855640, 6430524120, 6468862876, 6488003880, 6500134440, 6506266732
OFFSET
1,2
COMMENTS
Subset of A048257.
EXAMPLE
Divisors of 112890 are 1, 2, 3, 5, 6, 10, 15, 30, 53, 71, 106, 142, 159, 213, 265, 318, 355, 426, 530, 710, 795, 1065, 1590, 2130, 3763, 7526, 11289, 18815, 22578, 37630, 56445, 112890 and their sum is 279936 = 6^7.
MAPLE
with(numtheory): P:=proc(q) local a, k, n;
for n from 1 to q do a:=sort([op(divisors(n))]);
for k from 1 to nops(a) do if sigma(n)=a[k]^7 then print(n); break; fi; od; od; end: P(10^9);
MATHEMATICA
Select[Range[150000], IntegerQ[t = DivisorSigma[1, #]^(1/7)] && Mod[#, t] == 0 &] (* Giovanni Resta, May 04 2018 *)
PROG
(PARI) isok(n) = (n==1) || (ispower(s=sigma(n), 7) && !(n % sqrtnint(s, 7))); \\ Michel Marcus, May 05 2018
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, May 04 2018
EXTENSIONS
a(11)-a(25) from Giovanni Resta, May 04 2018
STATUS
approved