login
Expansion of Product_{k>0} (1+k^2*x^k)^(1/k).
1

%I #11 Apr 24 2018 02:18:44

%S 1,1,2,5,5,13,20,32,-2,107,149,129,-108,-262,606,4273,-1001,-1150,

%T -8147,-25864,1793,131821,236852,170299,-1457515,-1298382,-696074,

%U 4852276,13381975,9282183,-31755860,-38912939,-155537309,238551912,420017788,224666693,-1955768303

%N Expansion of Product_{k>0} (1+k^2*x^k)^(1/k).

%C This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1/n, g(n) = -n^2.

%p seq(coeff(series(mul((1+k^2*x^k)^(1/k), k = 1..n), x, n+1), x, n), n = 0..40); # _Muniru A Asiru_, Apr 22 2018

%o (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+k^2*x^k)^(1/k)))

%Y Cf. A294620, A303354.

%K sign

%O 0,3

%A _Seiichi Manyama_, Apr 22 2018