login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303084
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
12
1, 1, 2, 1, 2, 4, 1, 12, 2, 8, 1, 20, 32, 3, 16, 1, 72, 29, 112, 6, 32, 1, 168, 258, 90, 416, 10, 64, 1, 496, 432, 1455, 304, 1512, 21, 128, 1, 1296, 2525, 3667, 11767, 1054, 5472, 42, 256, 1, 3616, 6313, 33152, 34430, 84474, 4182, 19904, 86, 512, 1, 9760, 30188, 157838
OFFSET
1,3
COMMENTS
Table starts
...1..1.....1.....1........1.........1............1.............1
...2..2....12....20.......72.......168..........496..........1296
...4..2....32....29......258.......432.........2525..........6313
...8..3...112....90.....1455......3667........33152........157838
..16..6...416...304....11767.....34430.......636070.......4585419
..32.10..1512..1054....84474....409478.....13375327.....170974652
..64.21..5472..4182...615471...4862916....266882021....5924274499
.128.42.19904.17369..4647197..60442630...5754725245..218955384065
.256.86.72396.75377.35089147.764631608.125608726910.8100166904419
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=3: [order 11]
k=4: [order 56] for n>57
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = 2*a(n-1) +4*a(n-2) -4*a(n-3) -4*a(n-4)
n=3: [order 17] for n>18
n=4: [order 67] for n>68
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..1. .0..1..1..1. .0..0..1..1. .0..1..1..1. .0..0..0..1
..0..0..0..1. .1..1..1..1. .0..0..1..1. .1..1..1..1. .1..0..0..1
..0..1..0..1. .0..0..0..0. .1..0..0..0. .0..1..0..1. .1..0..0..1
..0..0..0..0. .0..0..0..0. .1..0..0..1. .1..1..1..1. .0..0..0..1
..0..0..0..1. .0..0..0..0. .0..0..0..1. .0..1..1..1. .1..0..0..1
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A240513(n-2).
Row 2 is A302368.
Sequence in context: A302460 A303242 A302367 * A302889 A303624 A121439
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 18 2018
STATUS
approved