login
A302205
Let the binary expansion of n be [b_d, b_{d-1}, ..., b_3, b_2, b_1, b_0]_2, where (if n>0) b_d = 1, b_i = 0 or 1 for i<d. To get a(n) concatenate the decimal numbers 2^(b_i) (if b_i = 1) or 0 (if b_i = 0).
1
0, 1, 20, 21, 400, 401, 420, 421, 8000, 8001, 8020, 8021, 8400, 8401, 8420, 8421, 160000, 160001, 160020, 160021, 160400, 160401, 160420, 160421, 168000, 168001, 168020, 168021, 168400, 168401, 168420, 168421, 3200000, 3200001, 3200020, 3200021, 3200400, 3200401, 3200420, 3200421, 3208000, 3208001, 3208020, 3208021, 3208400, 3208401, 3208420, 3208421, 32160000
OFFSET
0,3
COMMENTS
First differs from A063012 (which uses base 20) at n = 48, where A063012(48) = 3360000, whereas here a(48) = 32160000.
EXAMPLE
48_10 = 110000_2, so a(48) is the concatenation of 32, 16, 0, 0, 0, 0 = 32160000.
CROSSREFS
Cf. A063012.
Sequence in context: A063013 A028931 A063012 * A041836 A041837 A041838
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Apr 26 2018
EXTENSIONS
More than the usual number of terms are displayed in order to distinguish this from A063012.
STATUS
approved