login
A301583
G.f.: Sum_{n>=0} 4^n * ((1+x)^n - 1)^n.
7
1, 4, 64, 1792, 70736, 3600128, 224255040, 16521605376, 1405131880000, 135480346104896, 14602769310474240, 1739917222954854400, 227081534040721917952, 32217108743091290851328, 4936803887495636263284736, 812576030237749532251019264, 142976863303365903802301729024, 26781577193841845859144244087808, 5320767287406003709062843236972544, 1117525692987087894816123931091214336
OFFSET
0,2
COMMENTS
In general, if k > 0 and g.f.: Sum_{j>=0} k^j * ((1+x)^j - 1)^j, then a(n) ~ c * (1 + k*exp(1/r))^n * r^(2*n) * n! / sqrt(n), where r is the root of the equation exp(1/r) * (1 + 1/(r*LambertW(-exp(-1/r)/r))) = -1/k and c is a constant (dependent only on k). - Vaclav Kotesovec, Oct 08 2020
LINKS
FORMULA
G.f.: Sum_{n>=0} 4^n * (1+x)^(n^2) /(1 + 4*(1+x)^n)^(n+1).
a(n) ~ c * d^n * n! / sqrt(n), where d = (1 + 4*exp(1/r)) * r^2 = 11.35554580636894436474777793373210745006910386794268638744346793426715754570218..., where r = 0.95894043087329419322124137165060249611787608513866855417024... is the root of the equation exp(1/r) * (1 + 1/(r*LambertW(-exp(-1/r)/r))) = -1/4 and c = 0.358692703763731594549618907599728117285634153... - Vaclav Kotesovec, Aug 09 2018, updated Oct 08 2020
EXAMPLE
G.f.: A(x) = 1 + 4*x + 64*x^2 + 1792*x^3 + 70736*x^4 + 3600128*x^5 + 224255040*x^6 + 16521605376*x^7 + 1405131880000*x^8 + ...
such that
A(x) = 1 + 4*((1+x)-1) + 16*((1+x)^2-1)^2 + 64*((1+x)^3-1)^3 + 256*((1+x)^4-1)^4 + 1024*((1+x)^5-1)^5 + 4096*((1+x)^6-1)^6 + ...
Also,
A(x) = 1/5 + 4*(1+x)/(1 + 4*(1+x))^2 + 16*(1+x)^4/(1 + 4*(1+x)^2)^3 + 64*(1+x)^9/(1 + 4*(1+x)^3)^4 + 256*(1+x)^16/(1 + 4*(1+x)^4)^5 + 1024*(1+x)^25/(1 + 4*(1+x)^5)^6 + ...
MATHEMATICA
nmax = 20; CoefficientList[Series[1 + Sum[4^j*((1 + x)^j - 1)^j, {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 08 2020 *)
PROG
(PARI) {a(n) = my(A, o=x*O(x^n)); A = sum(m=0, n, 4^m * ((1+x +o)^m - 1)^m ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 24 2018
STATUS
approved