The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A301466 a(n) = Sum_{k>=0} binomial(k^3, n)/2^(k+1). 3
 1, 13, 2335, 1178873, 1168712311, 1916687692685, 4697337224419543, 16082097033630615185, 73313708225823014181097, 429319086610079876821621425, 3140585308524019620784003889263, 28066697522114849327295724261347841, 300886927215791917153044786581553617063 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..175 FORMULA a(n) ~ 3^(3*n + 1/2) * n^(2*n) / (2 * exp(2*n) * (log(2))^(3*n + 1)). G.f.: Sum_{n>=0} (1 + x)^(n^3) / 2^(n+1). MATHEMATICA Table[Sum[Binomial[k^3, n]/2^(k+1), {k, 0, Infinity}], {n, 0, 15}] Table[Sum[StirlingS1[n, j] * HurwitzLerchPhi[1/2, -3*j, 0]/2, {j, 0, n}] / n!, {n, 0, 15}] CROSSREFS Cf. A173217, A301310, A301432, A301468. Sequence in context: A202517 A221901 A096721 * A229267 A283099 A195537 Adjacent sequences:  A301463 A301464 A301465 * A301467 A301468 A301469 KEYWORD nonn AUTHOR Vaclav Kotesovec, Mar 21 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 09:38 EST 2021. Contains 340435 sequences. (Running on oeis4.)