login
E.g.f. A(x) satisfies: [x^n] A(x)^n = n^3 * [x^(n-1)] A(x)^n for n>=1.
2

%I #5 Mar 10 2018 09:52:58

%S 1,1,15,1285,347065,224232501,296201195791,719274160258585,

%T 2967337954539761265,19563048191912257746505,

%U 196302561889372679184550831,2881342883089548932078551914861,59862434550069057805236434063104105,1712289828911477479390772271103153886845

%N E.g.f. A(x) satisfies: [x^n] A(x)^n = n^3 * [x^(n-1)] A(x)^n for n>=1.

%C Compare e.g.f. to: [x^n] exp(x)^n = [x^(n-1)] exp(x)^n for n>=1.

%H Paul D. Hanna, <a href="/A300618/b300618.txt">Table of n, a(n) for n = 0..200</a>

%F E.g.f. A(x) satisfies: log(A(x)) = Sum_{n>=1} A300619(n)*x^n, a power series in x with integer coefficients.

%e E.g.f.: A(x) = 1 + x + 15*x^2/2! + 1285*x^3/3! + 347065*x^4/4! + 224232501*x^5/5! + 296201195791*x^6/6! + 719274160258585*x^7/7! + 2967337954539761265*x^8/8! + ...

%e ILLUSTRATION OF DEFINITION.

%e The table of coefficients of x^n in A(x)^n begins:

%e n=1: [(1), (1), 15/2, 1285/6, 347065/24, 74744167/40, ...];

%e n=2: [1, (2), (16), 1330/3, 88220/3, 56540144/15, ...];

%e n=3: [1, 3, (51/2), (1377/2), 358875/8, 228121101/40, ...];

%e n=4: [1, 4, 36, (2852/3), (182528/3), 38352496/5, ...];

%e n=5: [1, 5, 95/2, 7385/6, (1857145/24), (232143125/24), ...];

%e n=6: [1, 6, 60, 1530, 94500, (58551624/5), (12647150784/5), ...]; ...

%e in which the coefficients in parenthesis are related by

%e 1 = 1*1; 16 = 2^3*2; 1377/2 = 3^3*51/2; 182528/3 = 4^3*2852/3; ...

%e illustrating that: [x^n] A(x)^n = n^3 * [x^(n-1)] A(x)^n.

%e LOGARITHMIC PROPERTY.

%e The logarithm of the e.g.f. is the integer series:

%e log(A(x)) = x + 7*x^2 + 207*x^3 + 14226*x^4 + 1852800*x^5 + 409408077*x^6 + 142286748933*x^7 + 73448832515952*x^8 + ... + A300619(n)*x^n + ...

%o (PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^(#A-1)); A[#A] = ((#A-1)^3*V[#A-1] - V[#A])/(#A-1) ); n!*A[n+1]}

%o for(n=0, 20, print1(a(n), ", "))

%Y Cf. A182962, A296170, A300590, A300592, A300594, A300596, A300614, A300616, A300619.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Mar 10 2018