OFFSET
1,3
FORMULA
E.g.f.: L(x) = log(G(x)) where G(x) is the e.g.f. of A300045.
EXAMPLE
E.g.f.: L(x) = x + x^2/2! + 8*x^3/3! + 270*x^4/4! + 35472*x^5/5! + 18318288*x^6/6! + 37611139104*x^7/7! + 308338698386160*x^8/8! + 10105807430398162176*x^9/9! + ...
Related series.
exp(L(x)) = 1 + x + 2*x^2/2! + 12*x^3/3! + 312*x^4/4! + 37008*x^5/5! + 18540576*x^6/6! + ... + A300045(n)*x^n/n! + ...
exp(L(4*x)/2) = 1 + 2*x + 12*x^2/2! + 312*x^3/3! + 37008*x^4/4! + 18540576*x^5/5! + ... + A300045(n+1)*x^n/n! + ...
exp(L(2*x)/2) = 1 + x + 3*x^2/2! + 39*x^3/3! + 2313*x^4/4! + 579393*x^5/5! + 589702779*x^6/6! + ... + A300046(n)*x^n/n! + ...
PROG
(PARI) {a(n) = my(A=1+x); for(i=1, n, A = 1 + intformal(subst(A, x, 4*x)^(1/2) +x*O(x^n) )); n!*polcoeff(log(A), n)}
for(n=1, 16, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 25 2018
STATUS
approved