login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A300047 E.g.f. L(x) satisfies: L(x) = log(1 + Integral exp( L(4*x)/2 ) dx). 2
1, 1, 8, 270, 35472, 18318288, 37611139104, 308338698386160, 10105807430398162176, 1324669305373789482964224, 694520145536868530329362481152, 1456521257891915020152240334073326080, 12218201898131114878545053215635303915614208, 409974971372215896118360380056730403849666983370752 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Table of n, a(n) for n=1..14.

FORMULA

E.g.f.: L(x) = log(G(x)) where G(x) is the e.g.f. of A300045.

EXAMPLE

E.g.f.: L(x) = x + x^2/2! + 8*x^3/3! + 270*x^4/4! + 35472*x^5/5! + 18318288*x^6/6! + 37611139104*x^7/7! + 308338698386160*x^8/8! + 10105807430398162176*x^9/9! + ...

Related series.

exp(L(x)) = 1 + x + 2*x^2/2! + 12*x^3/3! + 312*x^4/4! + 37008*x^5/5! + 18540576*x^6/6! + ... + A300045(n)*x^n/n! + ...

exp(L(4*x)/2) = 1 + 2*x + 12*x^2/2! + 312*x^3/3! + 37008*x^4/4! + 18540576*x^5/5! + ... + A300045(n+1)*x^n/n! + ...

exp(L(2*x)/2) = 1 + x + 3*x^2/2! + 39*x^3/3! + 2313*x^4/4! + 579393*x^5/5! + 589702779*x^6/6! + ... + A300046(n)*x^n/n! + ...

PROG

(PARI) {a(n) = my(A=1+x); for(i=1, n, A = 1 + intformal(subst(A, x, 4*x)^(1/2) +x*O(x^n) )); n!*polcoeff(log(A), n)}

for(n=1, 16, print1(a(n), ", "))

CROSSREFS

Cf. A300045, A300046.

Sequence in context: A098275 A221606 A230590 * A129424 A274559 A159496

Adjacent sequences:  A300044 A300045 A300046 * A300048 A300049 A300050

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Feb 25 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 20 09:27 EDT 2019. Contains 324234 sequences. (Running on oeis4.)