|
|
A299829
|
|
Coefficients in expansion of (q*j(q))^(-5/24) where j(q) is the elliptic modular invariant (A000521).
|
|
2
|
|
|
1, -155, 28655, -5760440, 1202381535, -256382973906, 55428428962345, -12099932165757725, 2660417880657190215, -588191792902675685120, 130616050711284314803809, -29108986917589590736384395, 6506478780288042396481955095
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..12.
|
|
FORMULA
|
Convolution inverse of A289300.
a(n) ~ (-1)^n * c * exp(Pi*sqrt(3)*n) / n^(3/8), where c = 0.730428963078390701326735403005831754545040392327211512089... = 2^(5/8) * exp(5 * Pi / (8 * sqrt(3))) * Pi^(5/2) / (3^(5/8) * Gamma(1/3)^(15/4) * Gamma(5/8)). - Vaclav Kotesovec, Feb 20 2018, updated Mar 06 2018
a(n) * A289300(n) ~ -5*sqrt(2 + sqrt(2)) * exp(2*sqrt(3)*Pi*n) / (16*Pi*n^2). - Vaclav Kotesovec, Feb 20 2018
|
|
MATHEMATICA
|
CoefficientList[Series[(2 * QPochhammer[-1, x])^5 / (65536 + x*QPochhammer[-1, x]^24)^(15/24), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 20 2018 *)
|
|
CROSSREFS
|
Cf. A000521, A289300.
Sequence in context: A220592 A278730 A278432 * A115466 A057966 A247435
Adjacent sequences: A299826 A299827 A299828 * A299830 A299831 A299832
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Seiichi Manyama, Feb 20 2018
|
|
STATUS
|
approved
|
|
|
|