OFFSET
0,2
FORMULA
From Vaclav Kotesovec, Jul 05 2018: (Start)
Recurrence: n*(2*n - 3)*(4*n - 7)*a(n) = 9*(4*n - 5)*(4*n^2 - 10*n + 5)*a(n-1) - (n-1)*(2*n - 5)*(4*n - 3)*a(n-2).
a(n) ~ 2^(-3/2) * sqrt(5) * phi^(6*n - 3/2) / sqrt(Pi*n), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. (End)
a(n) = 4^n*Sum_{k=0..n} (5/4)^k*(Gamma(n + 1)*Gamma(n - 1/2))/(Gamma(k + 1)*Gamma(n - k + 1)^2*Gamma(k - 1/2)). - Detlef Meya, May 22 2024
MATHEMATICA
a[n_] := Hypergeometric2F1[-n, n - 1/2, 1, -4]; Table[a[n], {n, 0, 19}]
a[n_] := 4^n*Sum[(5/4)^k*(Gamma[n + 1]*Gamma[n - 1/2])/(Gamma[k + 1]*Gamma[n - k + 1]^2*Gamma[k - 1/2]), {k, 0, n}]; Flatten[Table[a[n], {n, 0, 19}]] (* Detlef Meya, May 22 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Mar 16 2018
STATUS
approved