login
A299056
Number of nX4 0..1 arrays with every element equal to 0, 2, 3, 4, 5 or 6 king-move adjacent elements, with upper left element zero.
1
1, 42, 199, 2096, 17930, 175031, 1718789, 17101477, 171333994, 1720010217, 17294372389, 173985722475, 1750874896463, 17622070573506, 177372546408622, 1785376032768684, 17971288389656990, 180897169816432156
OFFSET
1,2
COMMENTS
Column 4 of A299060.
LINKS
FORMULA
Empirical: a(n) = 8*a(n-1) +46*a(n-2) -154*a(n-3) -1109*a(n-4) +120*a(n-5) +8740*a(n-6) +9747*a(n-7) -21243*a(n-8) -32715*a(n-9) +35745*a(n-10) +30176*a(n-11) -79460*a(n-12) -60396*a(n-13) +168083*a(n-14) +59241*a(n-15) -212900*a(n-16) -111057*a(n-17) +602692*a(n-18) -96590*a(n-19) -518453*a(n-20) +106519*a(n-21) +395496*a(n-22) +82173*a(n-23) -470675*a(n-24) -282212*a(n-25) +137909*a(n-26) +870028*a(n-27) -989190*a(n-28) +390933*a(n-29) -423269*a(n-30) +512444*a(n-31) +29537*a(n-32) -223600*a(n-33) +8415*a(n-34) -55396*a(n-35) +59174*a(n-36) +11618*a(n-37) -9924*a(n-38) for n>39
EXAMPLE
Some solutions for n=5
..0..0..0..0. .0..0..1..1. .0..1..1..0. .0..1..1..0. .0..0..1..1
..1..0..1..0. .0..0..1..1. .0..0..1..1. .1..1..0..0. .0..0..1..1
..0..0..0..0. .0..0..0..0. .0..0..1..0. .0..1..0..0. .1..1..1..1
..1..0..1..0. .1..1..1..0. .1..1..0..0. .0..0..1..1. .1..0..1..1
..0..0..1..1. .1..1..1..1. .1..1..0..0. .0..0..0..1. .0..0..1..1
CROSSREFS
Cf. A299060.
Sequence in context: A158484 A154047 A090198 * A299817 A236278 A236271
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 01 2018
STATUS
approved