login
A298883
Determinant of n X n matrix whose elements are m(i,j) = prime(i)^j.
2
1, 2, 6, 180, 50400, 958003200, 131514679296000, 1352181326649753600000, 112703642894318944282214400000, 903025586371469323704949549301760000000, 2012769637740033870687308804001121075357286400000000
OFFSET
0,2
COMMENTS
Traces of these matrices are A087480.
LINKS
FORMULA
a(n) = Product_{1<=i<=n} prime(i) * Product_{1<=i<j<=n} (prime(j)-prime(i)). - Robert Israel, Jan 29 2018
EXAMPLE
For n=1:
|2| = 2, then a(1) = 2.
For n=2:
|2 4| = 6, then a(2) = 6.
|3 9|
For n=3:
|2 4 8| = 180, then a(3) = 180.
|3 9 27|
|5 25 125|
MAPLE
with(LinearAlgebra):
a:= n-> Determinant(Matrix(n, (i, j)-> ithprime(i)^j)):
seq(a(n), n=0..12); # Alois P. Heinz, Jan 28 2018
# Alternative:
f:= proc(n) local P;
P:= [seq(ithprime(i), i=1..n)];
convert(P, `*`)*mul(mul(P[j]-P[i], j=i+1..n), i=1..n-1)
end proc:
map(f, [$0..20]); # Robert Israel, Jan 29 2018
MATHEMATICA
a[n_]:=Table[Prime[i]^j, {i, 1, n}, {j, 1, n}];
Table[Det[a[n]], {n, 1, 10}]
PROG
(PARI) a(n) = matdet(matrix(n, n, i, j, prime(i)^j)); \\ Michel Marcus, Jan 28 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Andres Cicuttin, Jan 28 2018
STATUS
approved