login
Number of nX4 0..1 arrays with every element equal to 0, 3, 4, 6 or 7 king-move adjacent elements, with upper left element zero.
1

%I #4 Jan 24 2018 10:26:06

%S 1,1,1,2,2,9,13,26,74,134,325,731,1568,3625,8039,17982,40534,90659,

%T 203629,456958,1025608,2302082,5167454,11602659,26043008,58476012,

%U 131288529,294749848,661837914,1485958282,3336440686,7491565617

%N Number of nX4 0..1 arrays with every element equal to 0, 3, 4, 6 or 7 king-move adjacent elements, with upper left element zero.

%C Column 4 of A298667.

%H R. H. Hardin, <a href="/A298663/b298663.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 2*a(n-1) +3*a(n-2) +3*a(n-3) -19*a(n-4) -10*a(n-5) -3*a(n-6) +49*a(n-7) +21*a(n-8) +26*a(n-9) -57*a(n-10) -45*a(n-11) -44*a(n-12) +15*a(n-13) +27*a(n-14) +41*a(n-15) -4*a(n-16) +13*a(n-17) +32*a(n-18) -27*a(n-19) -87*a(n-20) -5*a(n-21) +52*a(n-22) +48*a(n-23) +24*a(n-24) +18*a(n-25) -27*a(n-26) -46*a(n-27) +11*a(n-28) +56*a(n-29) +5*a(n-30) -34*a(n-31) -21*a(n-32) -3*a(n-33) -a(n-34) +6*a(n-35)

%e Some solutions for n=8

%e ..0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..1..0

%e ..1..1..1..1. .1..1..1..1. .1..1..1..1. .1..1..1..1. .1..1..1..1

%e ..1..1..1..0. .0..1..1..1. .0..1..1..0. .0..1..1..0. .0..1..1..0

%e ..0..1..1..1. .1..1..1..0. .1..1..1..1. .1..1..1..1. .1..1..1..1

%e ..1..1..1..0. .0..1..1..1. .1..1..0..1. .0..1..1..0. .0..1..1..1

%e ..1..0..1..1. .1..1..1..0. .0..1..1..1. .1..1..1..1. .1..1..1..0

%e ..1..1..1..1. .1..1..1..1. .1..1..1..1. .1..1..1..1. .1..1..1..1

%e ..0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..1..0

%Y Cf. A298667.

%K nonn

%O 1,4

%A _R. H. Hardin_, Jan 24 2018