login
A298592
Triangle read by rows: T(n,k) = number of parking functions of length n whose lead number is k.
4
1, 2, 1, 8, 5, 3, 50, 34, 25, 16, 432, 307, 243, 189, 125, 4802, 3506, 2881, 2401, 1921, 1296, 65536, 48729, 40953, 35328, 30208, 24583, 16807, 1062882, 800738, 683089, 601441, 531441, 461441, 379793, 262144, 20000000, 15217031, 13119879, 11708091, 10546875, 9453125, 8291909, 6880121, 4782969
OFFSET
1,2
LINKS
D. Foata and J. Riordan, Mappings of acyclic and parking functions, J. Aeq. Math., 10 (1974) 10-22.
FORMULA
T(n,k) = Sum_{j=k..n} binomial(n-1, j-1)*j^(j-2)*(n+1-j)^(n-1-j).
T(n,k) = A298593(n,k)/n.
T(n,k) = Sum_{j=k..n} A298594(n,j).
T(n,k) = (Sum_{j=k..n} A298597(n,j))/n.
Sum_{k=1..n} T(n,k) = A000272(n+1).
EXAMPLE
Triangle begins:
1;
2, 1;
8, 5, 3;
50, 34, 25, 16;
432, 307, 243, 189, 125;
4802, 3506, 2881, 2401, 1921, 1296;
65536, 48729, 40953, 35328, 30208, 24583, 16807;
1062882, 800738, 683089, 601441, 531441, 461441, 379793, 262144;
...
MATHEMATICA
Table[Sum[Binomial[n - 1, j - 1] j^(j - 2)*(n + 1 - j)^(n - 1 - j), {j, k, n}], {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Jan 22 2018 *)
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Rui Duarte, Jan 22 2018
STATUS
approved