login
A298129
Number of nX4 0..1 arrays with every element equal to 2, 3, 4 or 7 king-move adjacent elements, with upper left element zero.
1
0, 5, 13, 15, 233, 1055, 5782, 36225, 205348, 1209336, 7104221, 41593299, 244217670, 1432727023, 8406086075, 49326923443, 289428447489, 1698283766510, 9965061067996, 58472010523076, 343097200672431, 2013196295930588
OFFSET
1,2
COMMENTS
Column 4 of A298133.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) +18*a(n-2) +25*a(n-3) -115*a(n-4) -418*a(n-5) -362*a(n-6) +1223*a(n-7) +4240*a(n-8) +2290*a(n-9) -9359*a(n-10) -16112*a(n-11) +3825*a(n-12) +30881*a(n-13) +10497*a(n-14) -37030*a(n-15) -21624*a(n-16) +40949*a(n-17) +30128*a(n-18) -52580*a(n-19) -29839*a(n-20) +16613*a(n-21) -97187*a(n-22) -8185*a(n-23) +199948*a(n-24) +235970*a(n-25) +21467*a(n-26) -396028*a(n-27) -168777*a(n-28) +347284*a(n-29) +546093*a(n-30) -20595*a(n-31) -733067*a(n-32) -497232*a(n-33) +64780*a(n-34) +471056*a(n-35) +244089*a(n-36) -113651*a(n-37) -210162*a(n-38) -106774*a(n-39) +42085*a(n-40) -11265*a(n-41) -9272*a(n-42) +5459*a(n-43) +12341*a(n-44) +24615*a(n-45) +7030*a(n-46) -4538*a(n-47) -4658*a(n-48) -2118*a(n-49) +128*a(n-50) +580*a(n-51) -4*a(n-52) -40*a(n-53) for n>56
EXAMPLE
Some solutions for n=7
..0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..0. .0..0..1..1
..0..1..1..0. .0..1..0..1. .0..0..1..0. .0..1..1..0. .0..1..0..1
..0..0..1..0. .1..1..0..0. .1..1..1..0. .1..0..1..0. .1..0..0..0
..1..1..0..1. .0..1..1..0. .1..0..0..1. .1..0..1..0. .0..1..1..0
..1..0..0..1. .0..0..0..1. .1..0..1..0. .0..1..0..0. .1..0..0..1
..1..0..0..1. .1..0..1..0. .0..1..1..0. .0..1..0..1. .1..0..1..0
..1..1..1..1. .1..1..0..0. .0..0..0..0. .0..0..1..1. .1..1..0..0
CROSSREFS
Cf. A298133.
Sequence in context: A067696 A050598 A297862 * A158334 A282747 A088908
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 13 2018
STATUS
approved