login
Number of n X 2 0..1 arrays with every element equal to 0, 2, 3 or 4 king-move adjacent elements, with upper left element zero.
5

%I #7 Feb 21 2018 14:29:32

%S 1,5,12,37,104,301,864,2485,7144,20541,59056,169797,488184,1403597,

%T 4035520,11602645,33359112,95911773,275758800,792842341,2279524632,

%U 6553929197,18843397088,54177212405,155766517544,447848955517

%N Number of n X 2 0..1 arrays with every element equal to 0, 2, 3 or 4 king-move adjacent elements, with upper left element zero.

%C Column 2 of A297915.

%H R. H. Hardin, <a href="/A297909/b297909.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 5*a(n-2) + 8*a(n-3) + 4*a(n-4).

%F Empirical g.f.: x*(1 + 5*x + 7*x^2 + 4*x^3) / ((1 + x)*(1 - x - 4*x^2 - 4*x^3)). - _Colin Barker_, Feb 21 2018

%e Some solutions for n=7:

%e ..0..1. .0..1. .0..1. .0..0. .0..0. .0..1. .0..1. .0..1. .0..1. .0..0

%e ..1..1. .1..1. .1..1. .1..0. .1..0. .0..0. .1..1. .1..1. .1..1. .0..1

%e ..1..0. .0..0. .1..0. .1..1. .1..1. .0..1. .1..1. .1..1. .0..0. .0..0

%e ..0..0. .0..1. .1..1. .1..1. .0..1. .0..0. .0..1. .0..0. .1..0. .1..0

%e ..0..1. .1..1. .0..0. .1..0. .0..0. .0..1. .1..1. .0..0. .0..0. .1..1

%e ..1..1. .1..0. .1..0. .1..1. .0..1. .1..1. .1..0. .1..0. .1..1. .0..0

%e ..1..1. .0..0. .1..1. .0..1. .1..1. .1..1. .0..0. .1..1. .1..1. .0..1

%Y Cf. A297915.

%K nonn

%O 1,2

%A _R. H. Hardin_, Jan 08 2018