login
T(n,k)=Number of nXk 0..1 arrays with each 1 adjacent to 1, 3 or 5 king-move neighboring 1s.
8

%I #4 Dec 22 2017 11:10:30

%S 1,2,2,3,8,3,4,16,16,4,6,36,45,36,6,9,112,135,135,112,9,13,256,544,

%T 620,544,256,13,19,608,1765,3637,3637,1765,608,19,28,1680,5763,17450,

%U 37179,17450,5763,1680,28,41,4064,20811,86139,256713,256713,86139,20811,4064

%N T(n,k)=Number of nXk 0..1 arrays with each 1 adjacent to 1, 3 or 5 king-move neighboring 1s.

%C Table starts

%C ..1....2.....3.......4.........6..........9...........13............19

%C ..2....8....16......36.......112........256..........608..........1680

%C ..3...16....45.....135.......544.......1765.........5763.........20811

%C ..4...36...135.....620......3637......17450........86139........451210

%C ..6..112...544....3637.....37179.....256713......1898178......16087936

%C ..9..256..1765...17450....256713....2640993.....29067775.....356242817

%C .13..608..5763...86139...1898178...29067775....482228052....8786244680

%C .19.1680.20811..451210..16087936..356242817...8786244680..246430289779

%C .28.4064.70207.2267574.121741279.4007327435.148081034460.6194343019644

%H R. H. Hardin, <a href="/A296952/b296952.txt">Table of n, a(n) for n = 1..199</a>

%F Empirical for column k:

%F k=1: a(n) = a(n-1) +a(n-3)

%F k=2: a(n) = 2*a(n-1) +8*a(n-3) -12*a(n-4)

%F k=3: [order 19]

%F k=4: [order 46]

%e Some solutions for n=5 k=4

%e ..0..0..0..0. .0..1..0..0. .0..1..0..0. .0..0..0..0. .1..0..0..0

%e ..0..1..0..1. .0..1..0..0. .0..0..1..0. .0..0..0..0. .1..0..0..0

%e ..0..1..0..1. .0..0..0..1. .1..0..1..1. .0..0..0..1. .0..0..0..0

%e ..0..1..1..1. .0..0..0..1. .1..0..0..1. .0..1..1..0. .0..1..1..0

%e ..0..0..1..0. .0..0..0..0. .0..0..0..1. .0..0..0..1. .0..1..1..0

%Y Column 1 is A000930(n+1).

%K nonn,tabl

%O 1,2

%A _R. H. Hardin_, Dec 22 2017