login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296779
Detour index of the n X n grid graph.
4
0, 16, 256, 1744, 6912, 21744, 55296, 126016, 256000, 487600, 864000, 1467216, 2370816, 3716944, 5619712, 8306944, 11943936, 16875216, 23328000, 31800400, 42592000, 56397616, 73598976, 95137344, 121485312, 153887344, 192914176, 240177616, 296352000, 363488400
OFFSET
1,2
COMMENTS
Also, the maximum detour index of any bipartite graph on n^2 nodes. - Andrew Howroyd, Dec 20 2017
LINKS
Eric Weisstein's World of Mathematics, Detour Index
Eric Weisstein's World of Mathematics, Grid Graph
Index entries for linear recurrences with constant coefficients, signature (2,4,-10,-5,20,0,-20,5,10,-4,-2,1).
FORMULA
a(2n-1) = 32*n^3*(n-1)^3, a(2n) = 4*n^2*(8*n^4 - 5*n^2 + 1). - Andrew Howroyd, Dec 20 2017
From Colin Barker, Dec 21 2017: (Start)
G.f.: 16*x^2*(1 + 14*x + 73*x^2 + 160*x^3 + 224*x^4 + 160*x^5 + 73*x^6 + 14*x^7 + x^8) / ((1 - x)^7*(1 + x)^5).
a(n) = 2*a(n-1) + 4*a(n-2) - 10*a(n-3) - 5*a(n-4) + 20*a(n-5) - 20*a(n-7) + 5*a(n-8) + 10*a(n-9) - 4*a(n-10) - 2*a(n-11) + a(n-12) for n>12.
(End)
a(n) = A296819(n^2). - Andrew Howroyd, Dec 23 2017
MATHEMATICA
a[n_] := If[OddQ[n], (1/2)*(n-1)^3*(n+1)^3, (1/4)*n^2*(2*n^4 - 5*n^2 + 4)]; Array[a, 30] (* Jean-François Alcover, Dec 21 2017, after Andrew Howroyd *)
LinearRecurrence[{2, 4, -10, -5, 20, 0, -20, 5, 10, -4, -2, 1}, {0, 16, 256, 1744, 6912, 21744, 55296, 126016, 256000, 487600, 864000, 1467216}, 30] (* Eric W. Weisstein, Dec 21 2017 *)
CoefficientList[Series[16 x (1 + 14 x + 73 x^2 + 160 x^3 + 224 x^4 + 160 x^5 + 73 x^6 + 14 x^7 + x^8)/((1 - x)^7 (1 + x)^5), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 21 2017 *)
PROG
(PARI) a(n)=((n^2)*(n^2-1)^2 - if(n%2, (n+1)^2*(n-1)^2, n^2*(n^2/2-1)))/2; \\ Andrew Howroyd, Dec 20 2017
(PARI) concat(0, Vec(16*x^2*(1 + 14*x + 73*x^2 + 160*x^3 + 224*x^4 + 160*x^5 + 73*x^6 + 14*x^7 + x^8) / ((1 - x)^7*(1 + x)^5) + O(x^40))) \\ Colin Barker, Dec 21 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Dec 20 2017
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Dec 20 2017
STATUS
approved