login
A296670
Number of nX4 0..1 arrays with each 1 adjacent to 0, 2 or 3 king-move neighboring 1s.
1
8, 68, 334, 2295, 16541, 110036, 775010, 5466936, 38297415, 270189305, 1906127172, 13440526836, 94852930442, 669387929531, 4723851423717, 33339481344296, 235299368710572, 1660671536323176, 11720659564142399, 82721881454050021
OFFSET
1,1
COMMENTS
Column 4 of A296674.
LINKS
FORMULA
Empirical: a(n) = 7*a(n-1) +7*a(n-2) +5*a(n-3) -357*a(n-4) -256*a(n-5) +1029*a(n-6) +2658*a(n-7) +3925*a(n-8) -1538*a(n-9) -9402*a(n-10) -16653*a(n-11) -1906*a(n-12) +11571*a(n-13) +44254*a(n-14) +42564*a(n-15) -8544*a(n-16) -40891*a(n-17) -36046*a(n-18) -5947*a(n-19) +19697*a(n-20) -21657*a(n-21) +3238*a(n-22) -1153*a(n-23) +1222*a(n-24) -974*a(n-25) +264*a(n-26) -32*a(n-27)
EXAMPLE
Some solutions for n=6
..0..1..0..1. .0..0..1..1. .1..1..0..0. .1..1..0..0. .0..0..0..0
..0..0..0..0. .0..0..1..0. .1..0..1..0. .0..1..0..0. .0..1..1..1
..0..0..0..1. .0..1..0..0. .0..1..0..0. .1..0..0..0. .1..0..0..1
..0..1..0..0. .0..1..1..0. .0..0..0..1. .1..0..1..0. .0..1..0..1
..0..0..0..1. .1..0..0..0. .0..0..0..0. .0..1..1..0. .1..0..0..1
..1..0..0..0. .1..1..0..1. .1..0..0..1. .0..0..0..0. .1..1..1..0
CROSSREFS
Cf. A296674.
Sequence in context: A192091 A050841 A208947 * A263477 A249390 A190510
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 18 2017
STATUS
approved