login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A296422 Primes that can be represented in the form b^n+1 or b^n-1 where b >= 2 and n >= 2. 1
3, 5, 7, 17, 31, 37, 101, 127, 197, 257, 401, 577, 677, 1297, 1601, 2917, 3137, 4357, 5477, 7057, 8101, 8191, 8837, 12101, 13457, 14401, 15377, 15877, 16901, 17957, 21317, 22501, 24337, 25601, 28901, 30977, 32401, 33857, 41617, 42437, 44101, 50177, 52901 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Union of A000668 and A121326. - Andrey Zabolotskiy, Dec 21 2017

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

MAPLE

N:= 10^5: # to get terms <= N

R:= 3:

for b from 2 while b^2+1 <= N do

  p:= 2:

  do

    p:= nextprime(p);

    if b^p-1 > N then break fi;

    if isprime(b^p-1) then R:= R, b^p-1 fi;

  od:

  p:= 1:

  do

    p:= 2*p;

    if b^p+1 > N then break fi;

    if isprime(b^p+1) then R:= R, b^p+1 fi;

  od;

od:

sort(convert({R}, list)); # Robert Israel, Jan 08 2018

MATHEMATICA

Select[Prime@ Range[2, 10^4], AnyTrue[# + {-1, 1}, Or[# == 1, GCD @@ FactorInteger[#][[All, -1]] > 1] &] &] (* Michael De Vlieger, Dec 13 2017 *)

PROG

(PARI) lista(nn) = {forprime(p=2, nn, if ((p==2) || ispower(p+1) || ispower(p-1), print1(p, ", ")); ); } \\ Michel Marcus, Dec 13 2017

CROSSREFS

Cf. A000040 (primes), A001597 (perfect powers).

Cf. A000668 (Mersenne primes), A121326.

Sequence in context: A032496 A002092 A274906 * A174394 A057476 A016041

Adjacent sequences:  A296419 A296420 A296421 * A296423 A296424 A296425

KEYWORD

nonn

AUTHOR

Nathaniel J. Strout, Dec 12 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 23:44 EDT 2019. Contains 328244 sequences. (Running on oeis4.)