login
A295903
Number of (not necessarily maximal) cliques in the n X n queen graph.
1
2, 16, 94, 293, 742, 1642, 3458, 7087, 14506, 29804, 61750, 128761, 269822, 566830, 1191898, 2505443, 5261218, 11032048, 23094830, 48265261, 100699222, 209756786, 436255474, 906024343, 1879110362, 3892384372, 8053142758, 16643086817, 34359837166, 70867070134
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Clique
Eric Weisstein's World of Mathematics, Queen Graph
Index entries for linear recurrences with constant coefficients, signature (6, -11, 0, 21, -18, -5, 12, -4).
FORMULA
a(n) = 3*2^(n + 1) + n*((-1)^(n + 1) + 2^(n + 2) + n*(9*n - 26) - 2)/2 - 5.
a(n) = 6*a(n-1) - 11*a(n-2) + 21*a(n-4) - 18*a(n-5) - 5*a(n-6) + 12*a(n-7) - 4*a(n-8).
G.f.: x*(2 + 4*x + 20*x^2 - 95*x^3 - 24*x^4 + 113*x^5 + 92*x^6 - 4*x^7)/((-1 + x)^4*(-1 + x + 2*x^2)^2).
MAPLE
f:=n-> 3*2^(n + 1) + n*((-1)^(n + 1) + 2^(n + 2) + n*(9*n - 26) - 2)/2 - 5:
map(f, [$1..40]); # Robert Israel, Nov 30 2017
MATHEMATICA
Table[3 2^(n + 1) + n ((-1)^(n + 1) + 2^(n + 2) + n (9 n - 26) - 2)/2 - 5, {n, 20}]
LinearRecurrence[{6, -11, 0, 21, -18, -5, 12, -4}, {2, 16, 94, 293,
742, 1642, 3458, 7087}, 20]
CoefficientList[Series[(2 + 4 x + 20 x^2 - 95 x^3 - 24 x^4 + 113 x^5 + 92 x^6 - 4 x^7)/((-1 + x)^4 (-1 + x + 2 x^2)^2), {x, 0, 20}], x]
CROSSREFS
Sequence in context: A207413 A271273 A220882 * A362767 A141243 A163229
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Nov 29 2017
STATUS
approved