login
A295728
a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = 1, a(1) = -1, a(2) = 1, a(3) = 1.
1
1, -1, 1, 1, 4, 7, 15, 26, 49, 83, 148, 247, 427, 706, 1197, 1967, 3292, 5387, 8935, 14578, 24025, 39115, 64164, 104303, 170515, 276866, 451477, 732439, 1192108, 1932739, 3141231, 5090354, 8264353, 13387475, 21717364, 35170375, 57018811, 92320258, 149601213
OFFSET
0,5
COMMENTS
a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045).
FORMULA
a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = -1, a(2) = 1, a(3) = 1.
G.f.: (1 - 2 x - x^2 + 5 x^3)/(1 - x - 3 x^2 + 2 x^3 + 2 x^4).
MATHEMATICA
LinearRecurrence[{1, 3, -2, -2}, {1, -1, 1, 1}, 100]
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Clark Kimberling, Nov 29 2017
STATUS
approved