|
|
A295702
|
|
Largest number with exactly n representations as a sum of six positive squares.
|
|
1
|
|
|
43, 64, 67, 82, 91, 106, 112, 109, 115, 133, 139, 154, 131, 160, 146, 178, 163, 181, 166, 169, 202, 187, 172, 226, 208, 211, 229, 196, 217, 232, 203, 256, 223, 274, 253
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
It appears that a(36) does not exist.
|
|
REFERENCES
|
E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985, p. 86, Theorem 1.
|
|
LINKS
|
Table of n, a(n) for n=1..35.
D. H. Lehmer, On the Partition of Numbers into Squares, The American Mathematical Monthly, Vol. 55, No. 8, October 1948, pp. 476-481.
|
|
CROSSREFS
|
Cf. A000177, A025430, A295494, A295669.
Sequence in context: A317393 A253848 A245742 * A102269 A020349 A050959
Adjacent sequences: A295699 A295700 A295701 * A295703 A295704 A295705
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Robert Price, Nov 25 2017
|
|
STATUS
|
approved
|
|
|
|