OFFSET
1,2
COMMENTS
Consider numbers m that are nondivisors in the cototient of n, listed in row n of A133995 and counted by A045763(n). This sequence lists numbers n for which there are more m such that m | n^e with e >= 0 than there are m that are products of at least one prime divisor p of n and one nondivisor prime q. The former species of m are "semidivisors" listed in row n of A272618 and counted by A243822(n), while the latter are "semitotatives" listed in row n of A272619 and counted by A243823(n). These two species constitute the only species of nondivisors in the cototient of n.
Primes p have no nondivisors in the cototient, i.e., A045763(p) = 0, therefore A243822(p) and A243823(p) also are 0. The equality of these latter two sequences is trivial in the case of primes.
LINKS
M. De Vlieger, Exploring Number Bases as Tools, ACM Inroads, March 2012, Vol. 3, No. 1, pp. 4-12.
EXAMPLE
1 is in the sequence because it is not prime and there are no nondivisors in the cototient, therefore A243822(1) = A243823(1) = 0.
4 is in the sequence because it is the very smallest composite; nondivisors in the cototient of n are composite and since 4 | 4, both A243822(4) and A243823(4) = 0.
6 is in the sequence because it is the only number for which A243822(6) = 1 but A243823(6) = 0. A272618(6) = 4; 4 | 6^2.
10 is in the sequence because it has 2 semidivisors 4 | 10^2 and 8 | 10^3, while only 1 semitotative 6 = 2 * 3.
14 is not in the sequence since it has 2 semidivisors (4 and 8) but 3 semitotatives (6, 10, and 12).
1, {}, {}
4, {}, {}
6, {4}, {}
10, {4,8}, {6}
12, {8,9}, {10}
18, {4,8,12,16}, {10,14,15}
30, {4,8,9,12,16,18,20,24,25,27}, {14,21,22,26,28}
MATHEMATICA
Select[Range@ 30, Function[n, And[! PrimeQ@ n, #2 - #1 >= n - (#2 + #3 - 1)] & @@ {DivisorSigma[0, n], Count[Range@ n, _?(PowerMod[n, #, #] == 0 &)], EulerPhi@ n}]]
CROSSREFS
KEYWORD
nonn,easy,fini,full
AUTHOR
Michael De Vlieger, Nov 23 2017
STATUS
approved