login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295171
Chromatic invariant of the n-crown graph.
1
1, 11, 328, 16369, 1181276, 116093641, 14916610346, 2428960220241, 489039354264712, 119323954705155265, 34701518665828422926, 11861024763916090258105, 4708209994260510940754540, 2148158302978435764574475817, 1116465105383647067485461486754
OFFSET
3,2
LINKS
Eric Weisstein's World of Mathematics, Chromatic Invariant
Eric Weisstein's World of Mathematics, Crown Graph
FORMULA
a(n) = Sum_{k=2..2*n} Sum_{j=0..n} Sum_{i=0..k-j} (-1)^k*(k-2)!*binomial(n, j)*Stirling2(n-j, i)*Stirling2(n-j, k-j-i). - Andrew Howroyd, Apr 22 2018
MATHEMATICA
Table[Sum[(-1)^k (k - 2)! Binomial[n, j] StirlingS2[n - j, i] StirlingS2[n - j, k - j - i], {k, 2, 2 n}, {j, 0, n}, {i, 0, k - j}], {n, 3, 20}] (* Eric W. Weisstein, Apr 23 2018 *)
PROG
(PARI) a(n)={sum(k=2, 2*n, (-1)^k*(k-2)!*sum(j=0, min(n, k), binomial(n, j)*sum(i=0, k-j, stirling(n-j, i, 2)*stirling(n-j, k-j-i, 2))))} \\ Andrew Howroyd, Apr 22 2018
CROSSREFS
Sequence in context: A241127 A268551 A108274 * A254545 A160293 A084944
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Nov 16 2017
EXTENSIONS
Terms a(10) and beyond from Andrew Howroyd, Apr 22 2018
STATUS
approved