login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A294473
Sum of the areas of the squares on the sides of the distinct rectangles that can be made with positive integer sides such that L + W = n, W < L.
2
0, 0, 10, 20, 60, 92, 182, 248, 408, 520, 770, 940, 1300, 1540, 2030, 2352, 2992, 3408, 4218, 4740, 5740, 6380, 7590, 8360, 9800, 10712, 12402, 13468, 15428, 16660, 18910, 20320, 22880, 24480, 27370, 29172, 32412, 34428, 38038, 40280, 44280, 46760, 51170
OFFSET
1,3
FORMULA
a(n) = 2 * Sum_{i=1..floor((n-1)/2)} i^2 + (n-i)^2.
a(n) = 2 * A294286(n).
From Colin Barker, Oct 31 2017: (Start)
G.f.: 2*x^3*(5 + 5*x + 5*x^2 + x^3) / ((1 - x)^4*(1 + x)^3).
a(n) = n*(8*n^2 - 18*n + 4) / 12 for n even.
a(n) = n*(8*n^2 - 12*n + 4) / 12 for n odd.
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n > 7.
(End)
a(n) = n*(2*n-3-(-1)^n)*(8*n-3+(-1)^n)/24. - Wesley Ivan Hurt, Dec 02 2023
EXAMPLE
a(14) = 1540; the rectangles are 1 X 13, 2 X 12, 3 X 11, 4 X 10, 5 X 9, 6 X 8 (7 X 7 is not considered since W < L). The sum of the areas of the squares on the sides of the rectangles is 2*1^2+2*13^2 + 2*2^2+2*12^2 + 2*3^2+2*11^2 + 2*4^2+2*10^2 + 2*5^2+2*9^2 + 2*6^2+2*8^2 = 340 + 296 + 260 + 232 + 212 + 200 = 1540.
MATHEMATICA
Table[2 Sum[i^2 + (n - i)^2, {i, Floor[(n-1)/2]}], {n, 40}]
PROG
(PARI) concat(vector(2), Vec(2*x^3*(5 + 5*x + 5*x^2 + x^3) / ((1 - x)^4*(1 + x)^3) + O(x^60))) \\ Colin Barker, Oct 31 2017
(PARI) a(n) = 2*sum(i=1, (n-1)\2, i^2 + (n-i)^2); \\ Michel Marcus, Nov 08 2017
(Magma) [n*(2*n-3-(-1)^n)*(8*n-3+(-1)^n)/24: n in [1..60]]; // Wesley Ivan Hurt, Dec 02 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Oct 31 2017
STATUS
approved