login
Number A(n,k) of ascent sequences of length n where no letter multiplicity is larger than k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
5

%I #21 Oct 19 2018 11:06:09

%S 1,1,0,1,1,0,1,1,1,0,1,1,2,1,0,1,1,2,4,1,0,1,1,2,5,10,1,0,1,1,2,5,14,

%T 27,1,0,1,1,2,5,15,47,83,1,0,1,1,2,5,15,52,180,277,1,0,1,1,2,5,15,53,

%U 210,773,1015,1,0,1,1,2,5,15,53,216,964,3701,4007,1,0

%N Number A(n,k) of ascent sequences of length n where no letter multiplicity is larger than k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

%H Alois P. Heinz, <a href="/A294220/b294220.txt">Antidiagonals n = 0..20, flattened</a>

%H P. Duncan and Einar Steingrimsson, <a href="https://arxiv.org/abs/1109.3641">Pattern avoidance in ascent sequences</a>, arXiv:1109.3641, 2011

%F A(n,k) = Sum_{j=0..k} A294219(n,j).

%F A(n,k) = A(n,n) = A022493(n) for k >= n.

%e A(4,2) = 10: 0123, 0011, 0012, 0101, 0102, 0110, 0112, 0120, 0121, 0122.

%e Square array A(n,k) begins:

%e 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

%e 0, 1, 1, 1, 1, 1, 1, 1, 1, ...

%e 0, 1, 2, 2, 2, 2, 2, 2, 2, ...

%e 0, 1, 4, 5, 5, 5, 5, 5, 5, ...

%e 0, 1, 10, 14, 15, 15, 15, 15, 15, ...

%e 0, 1, 27, 47, 52, 53, 53, 53, 53, ...

%e 0, 1, 83, 180, 210, 216, 217, 217, 217, ...

%e 0, 1, 277, 773, 964, 1006, 1013, 1014, 1014, ...

%e 0, 1, 1015, 3701, 4960, 5270, 5326, 5334, 5335, ...

%p b:= proc(n, i, t, p, k) option remember; `if`(n=0, 1,

%p add(`if`(coeff(p, x, j)=k, 0, b(n-1, j, t+

%p `if`(j>i, 1, 0), p+x^j, k)), j=1..t+1))

%p end:

%p A:= (n, k)-> b(n, 0$3, min(n, k)):

%p seq(seq(A(n, d-n), n=0..d), d=0..12);

%t b[n_, i_, t_, p_, k_] := b[n, i, t, p, k] = If[n == 0, 1, Sum[ If[ Coefficient[p, x, j] == k, 0, b[n-1, j, t + If[j>i, 1, 0], p + x^j, k]], {j, 1, t+1}]];

%t A[n_, k_] := b[n, 0, 0, 0, Min[n, k]];

%t Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 11}] // Flatten (* _Jean-François Alcover_, Aug 05 2018, translated from Maple *)

%Y Columns k=0-3 give: A000007, A000012, A202058, A317784.

%Y Main diagonal gives A022493.

%Y Cf. A294219.

%K nonn,tabl

%O 0,13

%A _Alois P. Heinz_, Oct 25 2017