login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294152
Chromatic invariant of the n-antiprism graph.
2
0, 2, 11, 38, 112, 309, 828, 2190, 5759, 15106, 39580, 103657, 271416, 710618, 1860467, 4870814, 12752008, 33385245, 87403764, 228826086, 599074535, 1568397562, 4106118196, 10749957073, 28143753072, 73681302194, 192900153563, 505019158550, 1322157322144
OFFSET
1,2
COMMENTS
Extended to a(1)-a(2) using the formula/recurrence.
LINKS
Eric Weisstein's World of Mathematics, Antiprism Graph
Eric Weisstein's World of Mathematics, Chromatic Invariant
FORMULA
a(n) = A005248(n) - 2*n - 1.
a(n) = phi^(2*n) + phi^(-2*n) - 2*n - 1.
a(n) = 5*a(n-1) - 8*a(n-2) + 5*a(n-3) - a(n-4).
G.f.: x^2*(2 + x - x^2)/((-1 + x)^2*(1 - 3*x + x^2)).
a(n) = -1 + ((3-sqrt(5))/2)^n + ((3+sqrt(5))/2)^n - 2*n. - Colin Barker, Nov 16 2017
MATHEMATICA
Table[LucasL[2 n] - 2 n - 1, {n, 3, 20}]
LinearRecurrence[{5, -8, 5, -1}, {0, 2, 11, 38}, 20]
CoefficientList[Series[(x (2 + x - x^2))/((-1 + x)^2 (1 - 3 x + x^2)), {x, 0, 20}], x]
PROG
(PARI) concat(0, Vec(x^2*(2 + x - x^2)/((-1 + x)^2*(1 - 3*x + x^2)) + O(x^40))) \\ Colin Barker, Nov 16 2017
CROSSREFS
Cf. A005248 (lucasl(2*n)).
Sequence in context: A097651 A320540 A059673 * A196701 A196850 A203534
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Nov 16 2017
STATUS
approved