login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293600
G.f. A(x,y) = Sum_{-oo..+oo} (x - y^n)^(n+1), as a flattened rectangular array of coefficients T(n,k) of x^n * y^(k*(n+k-1)) in A(x,y) for n>=1.
4
1, 1, -2, 1, -3, 2, 1, -4, 5, -2, 1, -5, 9, -7, 2, 1, -6, 14, -16, 9, -2, 1, -7, 20, -30, 25, -11, 2, 1, -8, 27, -50, 55, -36, 13, -2, 1, -9, 35, -77, 105, -91, 49, -15, 2, 1, -10, 44, -112, 182, -196, 140, -64, 17, -2, 1, -11, 54, -156, 294, -378, 336, -204, 81, -19, 2, 1, -12, 65, -210, 450, -672, 714, -540, 285, -100, 21, -2, 1, -13, 77, -275, 660, -1122, 1386, -1254, 825, -385, 121, -23, 2, 1, -14, 90, -352, 935, -1782, 2508, -2640, 2079, -1210, 506, -144, 25, -2, 1, -15, 104, -442, 1287, -2717, 4290, -5148, 4719, -3289, 1716, -650, 169, -27, 2
OFFSET
1,3
COMMENTS
Compare g.f. to the identity: Sum_{-oo..+oo} (x - y^n)^(n-1) = 0.
The Lucas triangle, A029635, consists of essentially the same coefficients, but differs in signs and initial term.
FORMULA
G.f. A(x,y) = Sum_{-oo..+oo} (x - y^n)^(n+1).
G.f. A(x,y) = x * Sum_{-oo..+oo} (x - y^n)^n.
G.f. A(x,y) = x/(1-x) + Sum_{n>=1} (-1)^n*x*y^(n^2)*(2 - x*y^n)/(1 - x*y^n)^(n+1).
G.f. A(x,y) = P(x,y) + Q(x,y) where
P(x,y) = Sum_{n>=0} (x - y^n)^(n+1),
P(x,y) = -1 + Sum_{n>=0} (-1)^n * y^(n*(n-1)) / (1 - x*y^n)^(n+1),
Q(x,y) = Sum_{n>=0} (-1)^n * y^(n*(n+1)) / (1 - x*y^(n+1))^n.
EXAMPLE
G.f. A(x,y) = Sum_{n>=1} x^n * Sum_{k>=0} T(n,k) * y^(k*(n+k-1))
such that A(x,y) = Sum_{-oo..+oo} (x - y^n)^(n+1).
Explicitly, the g.f. of this array begins:
A(x,y) = x*(1 - 2*y + 2*y^4 - 2*y^9 + 2*y^16 - 2*y^25 + 2*y^36 +...)
+ x^2*(1 - 3*y^2 + 5*y^6 - 7*y^12 + 9*y^20 - 11*y^30 + 13*y^42 +...)
+ x^3*(1 - 4*y^3 + 9*y^8 - 16*y^15 + 25*y^24 - 36*y^35 + 49*y^48 +...)
+ x^4*(1 - 5*y^4 + 14*y^10 - 30*y^18 + 55*y^28 - 91*y^40 + 140*y^54 +...)
+ x^5*(1 - 6*y^5 + 20*y^12 - 50*y^21 + 105*y^32 - 196*y^45 + 336*y^60 +...)
+ x^6*(1 - 7*y^6 + 27*y^14 - 77*y^24 + 182*y^36 - 378*y^50 + 714*y^66 +...)
+ x^7*(1 - 8*y^7 + 35*y^16 - 112*y^27 + 294*y^40 - 672*y^55 + 1386*y^72 +...)
+ x^8*(1 - 9*y^8 + 44*y^18 - 156*y^30 + 450*y^44 - 1122*y^60 + 2508*y^78 +...)
+...
Summing along columns gives the alternate g.f.:
A(x,y) = x/(1-x) + Sum_{n>=1} (-1)^n * x * y^(n^2) * (2 - x*y^n)/(1 - x*y^n)^(n+1).
Note that the coefficient of x in A(x,y) is Jacobi's theta_4 function of y.
Also, the coefficient of x^2 in A(x,y) equals Product_{n>=1} (1 - y^(2*n))^3.
RECTANGULAR ARRAY.
This array of coefficients T(n,k) of x^n * y^(k*(n+k-1)) in A(x,y) begins:
n=1: [1, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, ...];
n=2: [1, -3, 5, -7, 9, -11, 13, -15, 17, -19, 21, ...];
n=3: [1, -4, 9, -16, 25, -36, 49, -64, 81, -100, 121, ...];
n=4: [1, -5, 14, -30, 55, -91, 140, -204, 285, -385, 506, ...];
n=5: [1, -6, 20, -50, 105, -196, 336, -540, 825, -1210, 1716, ...];
n=6: [1, -7, 27, -77, 182, -378, 714, -1254, 2079, -3289, 5005, ...];
n=7: [1, -8, 35, -112, 294, -672, 1386, -2640, 4719, -8008, 13013, ...];
n=8: [1, -9, 44, -156, 450, -1122, 2508, -5148, 9867, -17875, 30888, ...];
n=9: [1, -10, 54, -210, 660, -1782, 4290, -9438, 19305, -37180, 68068, ...]; ...
where row n has g.f.: (1 - z) / (1 + z)^n.
The array has the alternate g.f.: (1 - z) / (1 - x + z).
RELATED SERIES.
We may also write A(x,y) = P(x,y) + Q(x,y) where
P(x,y) = -1 + Sum_{n>=0} (-1)^n * y^(n*(n-1)) / (1 - x*y^n)^(n+1),
Q(x,y) = Sum_{n>=0} (-1)^n * y^(n*(n+1)) / (1 - x*y^(n+1))^n.
These series begin as follows:
P(x,y) = (-1 + y^2 - y^6 + y^12 - y^20 + y^30 - y^42 + y^56 - y^72 +...)
+ x*(1 - 2*y + 3*y^4 - 4*y^9 + 5*y^16 - 6*y^25 + 7*y^36 - 8*y^49 +...)
+ x^2*(1 - 3*y^2 + 6*y^6 - 10*y^12 + 15*y^20 - 21*y^30 + 28*y^42 +...)
+ x^3*(1 - 4*y^3 + 10*y^8 - 20*y^15 + 35*y^24 - 56*y^35 + 84*y^48 +...)
+ x^4*(1 - 5*y^4 + 15*y^10 - 35*y^18 + 70*y^28 - 126*y^40 + 210*y^54 +...)
+ x^5*(1 - 6*y^5 + 21*y^12 - 56*y^21 + 126*y^32 - 252*y^45 + 462*y^60 +...)
+ x^6*(1 - 7*y^6 + 28*y^14 - 84*y^24 + 210*y^36 - 462*y^50 + 924*y^66 +...)
+ x^7*(1 - 8*y^7 + 36*y^16 - 120*y^27 + 330*y^40 - 792*y^55 + 1716*y^72 +...)
+...
Q(x,y) = (1 - y^2 + y^6 - y^12 + y^20 - y^30 + y^42 - y^56 + y^72 +...)
+ x*(-y^4 + 2*y^9 - 3*y^16 + 4*y^25 - 5*y^36 + 6*y^49 - 7*y^64 +...)
+ x^2*(-y^6 + 3*y^12 - 6*y^20 + 10*y^30 - 15*y^42 + 21*y^56 +...)
+ x^3*(-y^8 + 4*y^15 - 10*y^24 + 20*y^35 - 35*y^48 + 56*y^63 +...)
+ x^4*(-y^10 + 5*y^18 - 15*y^28 + 35*y^40 - 70*y^54 + 126*y^70 +...)
+ x^5*(-y^12 + 6*y^21 - 21*y^32 + 56*y^45 - 126*y^60 + 252*y^77 +...)
+ x^6*(-y^14 + 7*y^24 - 28*y^36 + 84*y^50 - 210*y^66 + 462*y^84 +...)
+ x^7*(-y^16 + 8*y^27 - 36*y^40 + 120*y^55 - 330*y^72 + 792*y^91 +...)
+...
PROG
(PARI) { T(n, k) = my(z=x+x*O(x^k)); polcoeff( (1-z)/(1+z)^n, k) }
/* Print as a rectangular array: */
for(n=1, 10, for(k=0, 10, print1(T(n, k), ", ")); print(""))
/* Print as a triangle: */
for(n=0, 14, for(k=0, n, print1(T(n-k+1, k), ", ")); print(""))
/* Print as a flattened array: */
for(n=0, 14, for(k=0, n, print1(T(n-k+1, k), ", ")); )
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Oct 16 2017
STATUS
approved