login
A293186
Odd bi-unitary abundant numbers: odd numbers k such that bsigma(k) > 2*k, where bsigma is the sum of the bi-unitary divisors function (A188999).
13
945, 8505, 10395, 12285, 15015, 16065, 17955, 19305, 19635, 21735, 21945, 23205, 23625, 25245, 25515, 25935, 26565, 27405, 28215, 28875, 29295, 29835, 31185, 31395, 33345, 33495, 33915, 34125, 34155, 34965, 35805, 36855, 37125, 38745, 39585, 40635, 41055
OFFSET
1,1
COMMENTS
Analogous to odd abundant numbers (A005231) with bi-unitary sigma (A188999) instead of sigma (A000203).
The numbers of terms not exceeding 10^k, for k = 3, 4, ..., are 1, 2, 82, 559, 6493, 61831, 642468, 6339347, 63112602, ... . Apparently, the asymptotic density of this sequence exists and equals 0.00063... . - Amiram Eldar, Sep 02 2022
LINKS
EXAMPLE
945 is in the sequence since bsigma(945) = 1920 > 2*945.
MATHEMATICA
f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] :=
DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; bOddAbundantQ[n_] := OddQ[n] && bsigma[n] > 2 n; Select[Range[1000], bOddAbundantQ] (* after Michael De Vlieger at A188999 *)
PROG
(PARI) udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));
biusig(n) = vecsum(biudivs(n));
isok(n) = (n % 2) && (biusig(n) > 2*n); \\ Michel Marcus, Dec 15 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Oct 01 2017
STATUS
approved