%I #11 Dec 30 2018 17:48:56
%S 3,81,3313,171282,9444158,541659909,31819176850,1902508129720,
%T 115307287484560,7064528615347192,436658221692698200,
%U 27188662712300575980,1703444238720524912060
%N Number of 6-regular maps with n vertices on the torus, up to orientation-preserving isomorphisms.
%H E. Krasko, A. Omelchenko, <a href="https://arxiv.org/abs/1709.03225">Enumeration of r-regular Maps on the Torus. Part I: Enumeration of Rooted and Sensed Maps</a>, arXiv preprint arXiv:1709.03225 [math.CO], 2017.
%H E. Krasko, A. Omelchenko, <a href="https://doi.org/10.1016/j.disc.2018.07.013">Enumeration of r-regular maps on the torus. Part I: Rooted maps on the torus, the projective plane and the Klein bottle. Sensed maps on the torus</a>, Discrete Mathematics, Volume 342, Issue 2, February 2019, pp. 584-599.
%Y Cf. A292408 (3-regular), A292971 (4-regular), A292972 (5-regular).
%K nonn,more
%O 1,1
%A _Evgeniy Krasko_, Sep 27 2017