login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292706 a(n) = 1/2*((-1)^n*E(2*n-1,n) - E(2*n-1,0)), where E(n,x) is the Euler polynomial. 1
0, 1, -31, 2060, -242972, 44808921, -11905513623, 4306834677808, -2035350070549744, 1217544864812657225, -899267301542329562375, 803729476432302540694956, -854933675015747706872042556, 1067328531318200947345698975505, -1545426104859564195269842899644047 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

REFERENCES

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 1972, Ch. 23.

LINKS

Table of n, a(n) for n=1..15.

FORMULA

a(n) = 1^(2*n-1) - 2^(2*n-1) + ... + (-1)^n*(n-1)^(2*n-1).

|a(n)| ~ 1/(1+e^(-2))*(n-1)^(2*n-1) = 0.88079707...*(n-1)^(2*n-1) as n goes to infinity.

MATHEMATICA

Table[((-1)^n EulerE[2n-1, n]-EulerE[2n-1, 0])/2, {n, 10}]

Map[Total[(Map[(-1)^# (#-1)&, Range[#]])^(2#-1)]&, Range[10]]

(* Peter J. C. Moses, Sep 21 2017 *)

PROG

(PARI) a(n) = sum(k=1, n-1, (-1)^(k+1)*k^(2*n-1)); \\ Michel Marcus, Sep 22 2017

CROSSREFS

Cf. A143074, A157805.

Sequence in context: A184488 A218352 A297549 * A212156 A297806 A219076

Adjacent sequences:  A292703 A292704 A292705 * A292707 A292708 A292709

KEYWORD

sign

AUTHOR

Vladimir Shevelev, Sep 21 2017

EXTENSIONS

More terms from Peter J. C. Moses, Sep 21 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 3 08:53 EDT 2020. Contains 336197 sequences. (Running on oeis4.)