login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292289
Smallest denominator of a proper fraction that has a nontrivial anomalous cancellation in base b.
3
6, 12, 14, 30, 33, 56, 60, 39, 64, 132, 138, 182, 189, 110, 84, 306, 315, 380, 390, 174, 272, 552, 564, 155, 402, 360, 259, 870, 885, 992, 1008, 405, 624, 609, 258, 1406, 1425, 754, 530, 1722, 1743, 1892, 1914, 504, 1120, 2256, 2280, 399, 1065, 1037, 897, 2862
OFFSET
2,1
COMMENTS
See comments at A291093.
For prime base p, (p + 1)/(p^2 + p) simplifies to 1/p by cancelling digit k = 1 in the numerator and denominator. This fraction is written "11/110" in base p and simplifies to "1/10" = 1/p.
Smallest base b for which n/d, simplified, has a numerator greater than 1 is 51.
FORMULA
a(p) = p^2 + p.
EXAMPLE
a(5) = 30, the corresponding numerator is 6; these are written "11/110" in quinary, cancelling a 1 in both numerator and denominator yields "1/10" which is 1/5. 6/30 = 1/5.
Table of smallest values correlated with least numerators:
b = base and index.
n = smallest numerator that pertains to d.
d = smallest denominator that has a nontrivial anomalous cancellation in base b (this sequence).
n/d = simplified ratio of numerator n and denominator d.
k = base-b digit cancelled in the numerator and denominator to arrive at n/d.
b-n+1 = difference between base and numerator plus one.
b^2-d = difference between the square of the base and denominator.
.
b n d n/d k b-n+1 b^2-d
-----------------------------------------
2 3 6 1/2 1 0 -2
3 4 12 1/3 1 0 -3
4 7 14 1/2 3 2 2
5 6 30 1/5 1 0 -5
6 11 33 1/3 5 4 3
7 8 56 1/7 1 0 -7
8 15 60 1/4 7 6 4
9 13 39 1/3 4 3 42
10 16 64 1/4 6 5 36
11 12 132 1/11 1 0 -11
12 23 138 1/6 11 10 6
13 14 182 1/13 1 0 -13
14 27 189 1/7 13 12 7
15 22 110 1/5 7 6 115
16 21 84 1/4 5 4 172
MATHEMATICA
Table[SelectFirst[Range[b, b^2 + b], Function[m, Map[{#, m} &, #] &@ Select[Range[b + 1, m - 1], Function[k, Function[{r, w, n, d}, AnyTrue[Flatten@ Map[Apply[Outer[Divide, #1, #2] &, #] &, Transpose@ MapAt[# /. 0 -> Nothing &, Map[Function[x, Map[Map[FromDigits[#, b] &@ Delete[x, #] &, Position[x, #]] &, Intersection @@ {n, d}]], {n, d}], -1]], # == Divide @@ {k, m} &]] @@ {k/m, #, First@ #, Last@ #} &@ Map[IntegerDigits[#, b] &, {k, m}] - Boole[Mod[{k, m}, b] == {0, 0}]] ] != {}]], {b, 2, 30}] (* Michael De Vlieger, Sep 13 2017 *)
CROSSREFS
Cf. A291093/A291094, A292288 (numerators), A292393 (digit that is canceled).
Sequence in context: A259397 A183029 A113791 * A281352 A351843 A135763
KEYWORD
nonn,frac,base
AUTHOR
Michael De Vlieger, Sep 13 2017
STATUS
approved