OFFSET
1,3
COMMENTS
a(n) is the sum of the first 2^(n-1) entries of A116640. - Joe Slater, Apr 11 2018
LINKS
Eric Weisstein's World of Mathematics, Halved Cube Graph.
Eric Weisstein's World of Mathematics, Wiener Index.
Index entries for linear recurrences with constant coefficients, signature (8,-16).
FORMULA
a(n) = 2^(2*n-5)*n for n > 1.
a(n) = 8*a(n-1) - 16*a(n-2) for n > 3.
G.f.: ((1 - 2 x) x^2)/(1 - 4 x)^2.
a(n) = 4*a(n-1) + 2^(2*n-5) for n > 2. - Joe Slater, Apr 11 2018
From Amiram Eldar, Apr 16 2022: (Start)
Sum_{n>=2} 1/a(n) = 32*log(4/3) - 8.
Sum_{n>=2} (-1)^n/a(n) = 8 - 32*log(5/4). (End)
From Stefano Spezia, Aug 04 2022: (Start)
E.g.f.: (exp(4*x) - 1)*x/8.
a(n) = (-1)^n*det(M(n-1))/2 for n > 1, where M(n) is the n X n symmetric Toeplitz matrix whose first row consists of 2, 4, ..., 2*n. (End)
MATHEMATICA
Table[If[n == 1, 0, 2^(2 n - 5) n], {n, 40}]
Join[{0}, LinearRecurrence[{8, -16}, {1, 6}, 20]]
CoefficientList[Series[((1 - 2 x) x)/(1 - 4 x)^2, {x, 0, 20}], x]
PROG
(PARI) a(n) = if(n<2, n-1, 2^(2*n-5)*n); \\ Altug Alkan, Apr 12 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Sep 08 2017
STATUS
approved