OFFSET
1,3
COMMENTS
The p-th root r(p) of the expected value E(|x|^p) for various distributions appears, for example, in chemical physics, where some interactions depend on high powers of interatomic distances.
When x is distributed normally with zero mean and standard deviation 1, r(p) evaluates to r(p) = ((p-1)!!*w(p))^(1/p), where w(p) = 1 for even p and sqrt(2/Pi) for odd p. Note that, by definition, r(2) = 1 and r(1) = w(1) = A076668.
The present constant is a = r(3).
LINKS
Stanislav Sykora, Table of n, a(n) for n = 1..1000
Wikipedia, Normal distribution
FORMULA
Equals (2!!*sqrt(2/Pi))^(1/3) = (2*A076668)^(1/3).
EXAMPLE
1.16857525496246554867047601109768527106052404816790797238351628742...
MATHEMATICA
ExpectedValue[Abs[#]^3&, NormalDistribution[0, 1]]^(1/3) // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Jul 28 2017 *)
PROG
(PARI) \\ General code, for any p > 0:
r(p) = (sqrt(2/Pi)^(p%2)*prod(k=0, (p-2)\2, p-1-2*k))^(1/p);
a = r(3) \\ Present instance
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Stanislav Sykora, Jul 26 2017
STATUS
approved