login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A289090 Decimal expansion of (E(|x|^3))^(1/3), with x being a normally distributed random variable. 4
1, 1, 6, 8, 5, 7, 5, 2, 5, 4, 9, 6, 2, 4, 6, 5, 5, 4, 8, 6, 7, 0, 4, 7, 6, 0, 1, 1, 0, 9, 7, 6, 8, 5, 2, 7, 1, 0, 6, 0, 5, 2, 4, 0, 4, 8, 1, 6, 7, 9, 0, 7, 9, 7, 2, 3, 8, 3, 5, 1, 6, 2, 8, 7, 4, 2, 3, 4, 1, 5, 2, 9, 3, 8, 8, 8, 7, 8, 5, 4, 6, 5, 2, 7, 8, 7, 1, 4, 2, 3, 4, 2, 8, 3, 8, 3, 4, 9, 3, 9, 6, 7, 3, 1, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

The p-th root r(p) of the expected value E(|x|^p) for various distributions appears, for example, in chemical physics, where some interactions depend on high powers of interatomic distances.

When x is distributed normally with zero mean and standard deviation 1, r(p) evaluates to r(p) = ((p-1)!!*w(p))^(1/p), where w(p) = 1 for even p and sqrt(2/Pi) for odd p. Note that, by definition, r(2) = 1 and r(1) = w(1) = A076668.

The present constant is a = r(3).

LINKS

Stanislav Sykora, Table of n, a(n) for n = 1..1000

Wikipedia, Normal distribution

FORMULA

Equals (2!!*sqrt(2/Pi))^(1/3) = (2*A076668)^(1/3).

EXAMPLE

1.16857525496246554867047601109768527106052404816790797238351628742...

MATHEMATICA

ExpectedValue[Abs[#]^3&, NormalDistribution[0, 1]]^(1/3) // RealDigits[#, 10, 105]& // First (* Jean-Fran├žois Alcover, Jul 28 2017 *)

PROG

(PARI) \\ General code, for any p > 0:

r(p) = (sqrt(2/Pi)^(p%2)*prod(k=0, (p-2)\2, p-1-2*k))^(1/p);

a = r(3) \\ Present instance

CROSSREFS

Cf. A060294, A076668 (p=1), A011002 (p=4), A289091 (p=5), A011350 (p=6).

Sequence in context: A199171 A010501 A249282 * A260691 A030644 A073462

Adjacent sequences:  A289087 A289088 A289089 * A289091 A289092 A289093

KEYWORD

nonn,cons

AUTHOR

Stanislav Sykora, Jul 26 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 26 10:52 EDT 2017. Contains 292518 sequences.