|
|
A288620
|
|
Triangle read by rows: T(n,k) = number of step shifted (decimated) sequence structures of length n using exactly k different symbols.
|
|
11
|
|
|
1, 1, 1, 1, 2, 1, 1, 5, 4, 1, 1, 5, 8, 3, 1, 1, 19, 50, 37, 9, 1, 1, 13, 54, 63, 26, 4, 1, 1, 47, 284, 479, 299, 83, 11, 1, 1, 51, 525, 1316, 1183, 454, 82, 8, 1, 1, 139, 2370, 8597, 10701, 5761, 1492, 196, 13, 1, 1, 107, 2872, 14619, 24736, 17998, 6429, 1198, 119, 6, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
COMMENTS
|
See A056371 for an explanation of step shifts. Permuting the symbols will not change the structure.
|
|
REFERENCES
|
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
|
|
LINKS
|
Andrew Howroyd, Table of n, a(n) for n = 1..1275
|
|
EXAMPLE
|
Triangle begins
1;
1, 1;
1, 2, 1;
1, 5, 4, 1;
1, 5, 8, 3, 1;
1, 19, 50, 37, 9, 1;
1, 13, 54, 63, 26, 4, 1;
1, 47, 284, 479, 299, 83, 11, 1;
1, 51, 525, 1316, 1183, 454, 82, 8, 1;
...
|
|
PROG
|
(PARI) \\ see A056391 for Polya enumeration functions
T(n, k) = NonequivalentStructsExactly(StepShiftPerms(n), k); \\ Andrew Howroyd, Oct 14 2017
|
|
CROSSREFS
|
Columns 2-6 are A056396, A056397, A056398, A056399, A056400.
Row sums are A288621.
Partial row sums include A056391, A056392, A056393, A056394, A056395.
Cf. A056371, A288627, A285522, A285548, A132191.
Sequence in context: A076241 A316399 A139347 * A263324 A284949 A241500
Adjacent sequences: A288617 A288618 A288619 * A288621 A288622 A288623
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Andrew Howroyd, Jun 11 2017
|
|
STATUS
|
approved
|
|
|
|