login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A288477 a(n) = (2^49 - 2)*n/3 + 247371098957. 1
247371098957, 187897355572727, 375547340046497, 563197324520267, 750847308994037, 938497293467807, 1126147277941577, 1313797262415347, 1501447246889117, 1689097231362887, 1876747215836657, 2064397200310427, 2252047184784197, 2439697169257967 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

For all n, the numbers a(n) and a(n) + 2 form a pair of consecutive Sierpiński numbers.

Conjecture: a(0) + 1 = 247371098958 is the smallest nonnegative even number m such that for all k >= 1 the numbers m + 2^k + 1 and m + 2^k - 1 are composite.

LINKS

Muniru A Asiru, Table of n, a(n) for n = 0..5000

Carlos Rivera, Collection 20th - 019

Wikipedia, Sierpinski number

Index entries for linear recurrences with constant coefficients, signature (2,-1).

FORMULA

G.f.: (247371098957 + 187402613374813*x)/(1 - x)^2.

MAPLE

seq(coeff(series((247371098957+187402613374813*x)/(1-x)^2, x, n+1), x, n), n = 0 .. 15); # Muniru A Asiru, Oct 01 2018

MATHEMATICA

Table[(2^49 - 2) n/3 + 247371098957, {n, 0, 13}] (* or *)

CoefficientList[Series[(247371098957 + 187402613374813 x)/(1 - x)^2, {x, 0, 13}], x] (* Michael De Vlieger, Jun 09 2017 *)

PROG

(MAGMA) [(2^49-2)*n/3+247371098957: n in [0..13]];

(PARI) a(n)=(2^49-2)*n/3+247371098957

(GAP) List([0..15], n->(2^49-2)*n/3+247371098957); # Muniru A Asiru, Oct 01 2018

CROSSREFS

Cf. A076336.

Sequence in context: A132908 A271820 A204781 * A268846 A076254 A213689

Adjacent sequences:  A288474 A288475 A288476 * A288478 A288479 A288480

KEYWORD

nonn,easy

AUTHOR

Arkadiusz Wesolowski, Jun 09 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 09:42 EDT 2018. Contains 316276 sequences. (Running on oeis4.)