This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A287917 Number of distinct primorials A002110(k) > A285784(n) such that the primorials are coprime to A285784(n). 1
 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 3, 1, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 1, 2, 4, 1, 2, 3, 4, 2, 1, 3, 1, 2, 3, 5, 4, 1, 3, 5, 2, 1, 4, 1, 6, 4, 2, 3, 1, 2, 5, 1, 4, 3, 2, 6, 1, 3, 5, 2, 4, 2, 5, 1, 6, 3, 1, 6, 1, 2, 3, 4, 5, 7, 3, 1, 4, 2, 1, 6, 1, 3, 2, 7, 5, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,3 COMMENTS Terms of A285784 that have a(n) = 1 appear in A287390. Terms of A285784 that have a(n) > 1 appear in A287391. From Michael De Vlieger, Jun 09 2017: (Start) Let primorial p_n# = A002110(n) and let m be a nonzero positive number called a totative such that gcd(t, p_n#) = 1. This sequence concerns nonprime m. A285784 is the sequence that lists unique nonprime totatives m of primorials p_n#. For A285784(1), a(n) = infinity, since 1 is the empty product and a totative of (i.e., coprime to) all numbers. Hence the offset of a(n) is 2 and for this reason hereinafter we only consider composite totatives m. Consider the composite totative m in A285784. For a given composite term in A285784, there is a least primorial p_a# to which m is coprime. Such m < p_a# are products of prime totatives q > p_a, the gpf of p_a#. Therefore m "appears" when there are prime totatives q < sqrt(p_a#). The smallest a for which we have this condition is a = 4, as q = 11 is less than sqrt(210). For the same reason the first composite term of A285784 is 11^2 = 121. For n >= 2, m is coprime to a finite range of primorials p_a# .. p_b#. If m is coprime to p_b#, then it must be coprime to all primorials p_a# .. p_b# by the definition of primorial. m is no longer coprime to p_(b+1)# since at least one of its prime divisors p_(b+1) also divides p_(b+1)#. This sequence gives the range b - a + 1. To generate data that includes all the terms of A285784 less than a limit x, we can write a while statement that operates so long as there is at least 1 totative m < x of p_n#. Since primorial p_n# is the product of the smallest n primes, fewer numbers less than x are coprime to p_n# as n increases, until exhaustion. Thus we can produce a list of unique m < x (i.e., terms of A285784 less than x) for relatively large primorials p_n#. Then we can count the instances of terms of A285784 for a list of lists of totatives m < x for primorials p_1# .. p_n# and obtain certainty about the number of instances of terms of A285784. First position of values of a(n): {2, 4, 12, 20, 38, 47, 76, 96, 111, 139, 228, 241, 300, 339, 363, 434, 482, 566, 689, 752, 790, 862, 902, 973, 1264, 1361, 1506, 1562, 1816, ...} Terms of A285784 that set records in a(n): {121, 169, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, ...} (End) LINKS EXAMPLE The sequence starts:    n  A285784(n)  a(n)    2      121     1    3      143     1    4      169     2    5      187     1    6      209     1    7      221     1    8      247     1    9      289     2   10      299     1   11      323     2   12      361     3   13      377     1   14      391     2   15      403     1   16      437     3   17      481     1   18      493     2   ... MATHEMATICA Block[{nn = 1600, k = 1, P = 2, a}, a = Most@ Reap[While[Nand[k > 3, Length@ Sow@ Rest@ Select[Range[Min[P, nn]], And[! PrimeQ@ #, CoprimeQ[#, P]] &] == 0], k++; P *= Prime@ k]][[-1, 1]]; Function[b, Map[Count[b, #] &, Union@ b]]@ Flatten@ a] (* Michael De Vlieger, Jun 09 2017 *) CROSSREFS Cf. A002110, A285784, A287390, A287391. Sequence in context: A111335 A242442 A163768 * A029434 A156281 A002217 Adjacent sequences:  A287914 A287915 A287916 * A287918 A287919 A287920 KEYWORD nonn AUTHOR Jamie Morken and Michael De Vlieger, Jun 08 2017 EXTENSIONS Edited by Michael De Vlieger, Jun 09 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 04:47 EST 2019. Contains 319269 sequences. (Running on oeis4.)