This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A287514 Squarefree numbers n such that alpha(n) = lambda(n), where alpha(n) = LCM of all (p+1) for primes p dividing n, and lambda(n) = A002322(n). 1
 4147, 8294, 8323, 12441, 16646, 20735, 24882, 24969, 41470, 41615, 49938, 55309, 62205, 83230, 91553, 108199, 110618, 124410, 124845, 165927, 183106, 216398, 249690, 274659, 276545, 324597, 331854, 387163, 457765, 540995, 549318, 553090, 608399, 649194, 719017, 774326, 829635, 915530 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Are there infinitely many such numbers? These numbers have at least three prime factors. If m and n are in the sequence, then lcm(m,n) is in the sequence. - Robert Israel, Jul 05 2017 LINKS Robert G. Wilson v, Table of n, a(n) for n = 1..398 EXAMPLE 4147 = 11*13*29 and lcm(12,14,30) = lcm(10,12,28) = 420. 13*23*29*41*43 multiplied by any divisor of 2*3*5*7*11. MAPLE filter:= proc(n) local F;   F:= ifactors(n);   if max(seq(f, f=F)) > 1 then return false fi; ilcm(seq(f-1, f=F)) = ilcm(seq(f+1, f=F)) end proc: select(filter, [\$2..10^6]); # Robert Israel, Jul 05 2017 MATHEMATICA fQ[n_] := If[ SquareFreeQ@ n, Block[{p = First@ Transpose@ FactorInteger@ n}, LCM @@ (p - 1) == LCM @@ (p + 1)], False]; Select[ Range[10^6], fQ] (* Robert G. Wilson v, Jun 05 2017 *) CROSSREFS Cf. A002322. Sequence in context: A254230 A106537 A256080 * A072896 A052464 A161752 Adjacent sequences:  A287511 A287512 A287513 * A287515 A287516 A287517 KEYWORD nonn AUTHOR Thomas Ordowski, May 26 2017 EXTENSIONS More terms from Robert G. Wilson v, Jun 05 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 13 01:54 EST 2019. Contains 329085 sequences. (Running on oeis4.)