login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Primes that can be generated by the concatenation in base 8, in ascending order, of two consecutive integers read in base 10.
2

%I #21 Jun 17 2021 04:44:47

%S 19,37,521,911,1171,1301,1951,2081,2341,2731,2861,3121,3251,3511,

%T 32833,35911,37963,43093,44119,46171,53353,56431,57457,59509,61561,

%U 68743,71821,77977,85159,87211,88237,90289,95419,99523,100549,114913,117991,123121,124147,126199

%N Primes that can be generated by the concatenation in base 8, in ascending order, of two consecutive integers read in base 10.

%C Primes of the form (1+8^k) m + 1 where m+1 < 8^k < 8(m+1). - _Robert Israel_, May 24 2017

%H Robert Israel, <a href="/A287310/b287310.txt">Table of n, a(n) for n = 1..10000</a>

%e 2 and 3 in base 8 are 2_8 and 3_8, and concat(2,3) = 23_8 in base 10 is 19;

%e 8 and 9 in base 8 are 10_8 and 11_8 and concat(10,11) = 1011_8 in base 10 is 521.

%p with(numtheory): P:= proc(q,h) local a,b,c,d,k,n; a:=convert(q+1,base,h); b:=convert(q,base,h); c:=[op(a),op(b)]; d:=0; for k from nops(c) by -1 to 1 do d:=h*d+c[k]; od; if isprime(d) then d; fi; end: seq(P(i,8),i=1..1000);

%t With[{b = 8}, Select[Map[FromDigits[Flatten@ IntegerDigits[#, b], b] &, Partition[Range@ 250, 2, 1]], PrimeQ]] (* _Michael De Vlieger_, May 25 2017 *)

%Y Cf. A000040, A030458.

%K nonn,base,easy

%O 1,1

%A _Paolo P. Lava_, May 24 2017