login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A287272 a(n) is the number of zeros of the Laguerre L(n, x) polynomial in the open interval (-1, +1). 0
0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

The Laguerre polynomials are given by the sum: L(n,x) = Sum_{k=0..n} ((-1)^k)/k!*binomial(n,k)*x^k.

The first few Laguerre polynomials are:

L(0,x) =   1,

L(1,x) =  -x + 1,

L(2,x) = ( x^2 - 4*x + 2)/2,

L(3,x) = (-x^3 + 9*x^2 - 18*x + 6)/6,

L(4,x) = ( x^4 - 16*x^3 + 72*x^2 - 96*x + 24)/24,

L(5,x) = (-x^5 + 25*x^4 - 200*x^3 + 600*x^2 - 600*x + 120)/120.

The number of occurrences a(n) = 0, 1, 2,.. is given by the sequence {2, 6, 11, 16, 21, ...}.

LINKS

Table of n, a(n) for n=0..81.

Eric Weisstein's World of Mathematics, The World of Mathematics: Laguerre Polynomial

EXAMPLE

a(3) = 1 because the zeros of L(3,x) = (-x^3 + 9*x^2 - 18*x + 6)/6 are x1=.4157745568..., x2=2.294280360... and x3=6.289945083... with the root x1 in the open interval (-1, +1). Hence, a(3) = 1.

MAPLE

for n from 0 to 90 do:it:=0:

y:=[fsolve(expand(LaguerreL(n, x)), x, real)]:for m from 1 to nops(y) do:if abs(y[m])<1 then it:=it+1:else fi:od: printf(`%d, `, it):od:

CROSSREFS

Cf. A066667.

Sequence in context: A100961 A263206 A230501 * A300287 A226764 A206244

Adjacent sequences:  A287269 A287270 A287271 * A287273 A287274 A287275

KEYWORD

nonn

AUTHOR

Michel Lagneau, May 22 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 5 17:04 EDT 2020. Contains 335473 sequences. (Running on oeis4.)