login
a(n) = a(n-2) - 2*a(n-3) + a(n-4) for n>3, a(0)=0, a(1)=2, a(2)=-1, a(3)=3.
1

%I #15 May 11 2017 06:24:09

%S 0,2,-1,3,-5,7,-12,20,-31,51,-83,133,-216,350,-565,915,-1481,2395,

%T -3876,6272,-10147,16419,-26567,42985,-69552,112538,-182089,294627,

%U -476717,771343,-1248060,2019404,-3267463,5286867,-8554331,13841197,-22395528,36236726

%N a(n) = a(n-2) - 2*a(n-3) + a(n-4) for n>3, a(0)=0, a(1)=2, a(2)=-1, a(3)=3.

%H Colin Barker, <a href="/A286390/b286390.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,-2,1).

%F a(n) = A286311(-n).

%F b(n) = A286311(n) + (period 6 sequence : repeat [0, 1, 0, 0, 0, -1]) = 0, 2, 1, 3, 5, 7, 12, 20, 31, 51, 83, 133, ... . See A134667(n).

%F a(n) = -(-1)^n*b(n).

%F G.f.: x*(2 - x + x^2) / ((1 + x - x^2)*(1 - x + x^2)). - _Colin Barker_, May 08 2017

%t LinearRecurrence[{0, 1, -2, 1}, {0, 2, -1, 3}, 38] (* or *)

%t CoefficientList[Series[x (2 - x + x^2)/((1 + x - x^2) (1 - x + x^2)), {x, 0, 37}], x] (* _Michael De Vlieger_, May 08 2017 *)

%o (PARI) concat(0, Vec(x*(2 - x + x^2) / ((1 + x - x^2)*(1 - x + x^2)) + O(x^60))) \\ _Colin Barker_, May 08 2017

%Y Cf. A134667, A286311.

%K sign,easy

%O 0,2

%A _Paul Curtz_, May 08 2017

%E Typo in data fixed and more terms added by _Colin Barker_, May 08 2017