login
A286042
Largest prime factor of A285993(n), the largest odd abundant number (A005231) equal to the product of n consecutive primes.
1
13, 17, 19, 23, 31, 37, 41, 43, 47, 53, 59, 61, 67, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353
OFFSET
5,1
COMMENTS
The smallest term is a(5), there is no odd abundant number (A005231) equal to the product of less than 5 consecutive primes.
The corresponding abundant numbers are A285993(n) = prime(k-n+1)*...*prime(k), with prime(k) = a(n).
LINKS
FORMULA
a(n) = A006530(A285993(n)) >= A151800(a(n-1)) = nextprime(a(n-1)), with strict inequality for n = 9, 18, 31, 46, 67, ..., in which case a(n) = nextprime(nextprime(a(n-1))). This is the case if A285993(n) is in A007741.
EXAMPLE
For n < 5, there is no odd abundant number equal to the product of n distinct primes.
For 5 <= n <= 8, the largest odd abundant number equal to the product of n consecutive primes is 3*...*a(n) with a(n) = prime(n+1).
For 9 <= n <= 17, the largest odd abundant number equal to the product of n consecutive primes is 5*...*a(n) with a(n) = prime(n+2).
For 18 <= n <= 30, the largest odd abundant number equal to the product of n consecutive primes is 7*...*a(n) with a(n) = prime(n+3).
For 31 <= n <= 45, the largest odd abundant number equal to the product of n consecutive primes is 11*...*a(n) with a(n) = prime(n+4).
For 46 <= n <= 66, the largest odd abundant number equal to the product of n consecutive primes is 13*...*a(n) with a(n) = prime(n+5).
PROG
(PARI) a(r, f=vector(r, i, prime(i+1)), o)={ while(sigma(factorback(f), -1)>2, o=f; f=concat(f[^1], nextprime(f[r]+1))); o[#o]} \\ Intentionally throws an error when n < 5.
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, May 01 2017
EXTENSIONS
a(66) corrected by Amiram Eldar, Sep 24 2019
STATUS
approved