login
Number of integers b with 1 < b < c such that b^(c-1) == 1 (modulo c), where c is the n-th composite number.
0

%I #22 May 12 2017 10:24:40

%S 0,0,0,1,0,0,0,3,0,0,0,3,0,0,3,0,1,2,0,0,3,0,3,0,0,3,0,0,0,7,0,0,5,0,

%T 3,2,0,3,0,3,0,0,0,3,0,15,4,0,3,2,0,0,3,2,3,0,0,1,0,0,15,0,3,0,0,35,0,

%U 3,0,3,0,0,3,0,0,0,15,0,0,0,3,2,0,3,0,7

%N Number of integers b with 1 < b < c such that b^(c-1) == 1 (modulo c), where c is the n-th composite number.

%C a(n) > 1 iff c is a term of A039769, i.e., iff A268310(n) > 0.

%e For n = 8: A002808(8) = 15 and b^(15-1) == 1 (modulo 15) for three values of b with 1 < b < c, namely 4, 11, 14, so a(8) = 3.

%t DeleteCases[Table[If[CompositeQ@ n, Count[Range[2, n - 1], b_ /; Mod[b^(n - 1), n] == 1], -1], {n, 117}], -1] (* _Michael De Vlieger_, May 09 2017 *)

%o (PARI) forcomposite(c=1, 200, my(i=0); for(b=2, c-1, if(Mod(b, c)^(c-1)==1, i++)); print1(i, ", "))

%Y Cf. A002808, A039769, A268310.

%K nonn

%O 1,8

%A _Felix Fröhlich_, May 09 2017