login
A284348
Binary representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 873", based on the 5-celled von Neumann neighborhood.
4
1, 0, 110, 1010, 1010, 101110, 101110, 11111010, 111101010, 1110111110, 11011111110, 101011111010, 101111111010, 10111111111110, 11111111111110, 1111111111111010, 11111111111101010, 111111111110111110, 1111111111111111110, 11111111111111111010
OFFSET
0,3
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Chai Wah Wu, May 06 2024: (Start)
a(n) = 10*a(n-1) + a(n-8) - 10*a(n-9) for n > 23.
G.f.: (-1000000000000000*x^23 + 90000000000000*x^22 - 9100000000000*x^21 + 909000000000*x^20 + 9100000000*x^19 + 100000000*x^18 + 999999989900000*x^15 - 89999999090000*x^14 + 9099999910000*x^13 - 908999990000*x^12 - 9100000000*x^11 - 90000100*x^10 - 898980*x^9 - 9091*x^8 + 10099910*x^7 - 909990*x^6 + 91010*x^5 - 9090*x^4 - 90*x^3 + 110*x^2 - 10*x + 1)/(10*x^9 - x^8 - 10*x + 1). (End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 873; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Mar 25 2017
STATUS
approved