login
A284051
a(n) = A240751(n) mod n, where A240751(n) = the smallest k such that in the prime power factorization of k! there exists at least one exponent n.
3
0, 0, 1, 2, 2, 3, 1, 2, 3, 2, 3, 2, 1, 2, 1, 2, 2, 2, 3, 5, 3, 2, 3, 4, 3, 4, 3, 4, 8, 3, 1, 2, 3, 2, 3, 6, 2, 2, 3, 1, 3, 4, 3, 2, 3, 2, 3, 3, 3, 4, 6, 7, 3, 4, 4, 4, 5, 4, 5, 4, 4, 5, 1, 2, 5, 2, 3, 5, 4, 2, 3, 6, 3, 4, 6, 7, 7, 2, 3, 2, 3, 4, 8, 3, 3, 4, 7
OFFSET
1,4
LINKS
FORMULA
A240751(n) = n*A284050(n) + a(n). - Antti Karttunen, Mar 22 2017
EXAMPLE
A240751(5) = 12 so a(5) = 12 mod 5 == 2.
MATHEMATICA
Table[k = 2; While[! MemberQ[FactorInteger[k!][[All, -1]], n], k++]; Mod[k, n], {n, 87}] (* Michael De Vlieger, Mar 24 2017 *)
PROG
(PARI) a(n) = A240751(n)%n \\ (For computation of A240751(n), see A240751)
CROSSREFS
Sequence in context: A325518 A282863 A308662 * A226743 A166269 A181648
KEYWORD
nonn,easy
AUTHOR
David A. Corneth, Mar 19 2017
STATUS
approved