%I
%S 2,3,4,8,12,14,16,20,22,28,44,48,52,58,74,96,116,130,153,154,176,180,
%T 200,230,240,256,288,296,312
%N Class numbers of the fields Q(sqrt(A283658(n)).
%D Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
%e The sequence starts with 2 because the first number in A283658 is 10 and the class number of Q(sqrt(10)) equals 2.
%e The fifth term is 12 because A283658(5) = 226 and the class number of Q(sqrt(226)) is 12.
%t H = {}; hx = 1; d = 2; While[hx < 5, d++;
%t If[SquareFreeQ[d], h = NumberFieldClassNumber[Sqrt[d]];
%t If[h > hx, AppendTo[H, h]; hx = h]]]; H
%Y Cf. A283658, A003649, A003172.
%K nonn,more
%O 1,1
%A _Emmanuel Vantieghem_, Mar 13 2017
