%I #4 Mar 02 2017 20:45:08
%S 0,0,0,0,0,0,0,6,6,0,0,36,83,36,0,0,176,868,868,176,0,0,824,7899,
%T 16048,7899,824,0,0,3668,66412,263232,263232,66412,3668,0,0,15808,
%U 535025,4024168,7842272,4024168,535025,15808,0,0,66640,4184880,59065412
%N T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than two of its horizontal and vertical neighbors, with the exception of exactly one element.
%C Table starts
%C .0.....0........0...........0.............0................0..................0
%C .0.....0........6..........36...........176..............824...............3668
%C .0.....6.......83.........868..........7899............66412.............535025
%C .0....36......868.......16048........263232..........4024168...........59065412
%C .0...176.....7899......263232.......7842272........218628378.........5855079969
%C .0...824....66412.....4024168.....218628378......11127848480.......544338609740
%C .0..3668...535025....59065412....5855079969.....544338609740.....48652102368973
%C .0.15808..4184880...842673912..152494818512...25902857395584...4230873205192882
%C .0.66640.32026556.11773250320.3891003515011.1207783406994400.360562132072479325
%H R. H. Hardin, <a href="/A283203/b283203.txt">Table of n, a(n) for n = 1..180</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-1)
%F k=2: [order 10]
%F k=3: [order 18]
%F k=4: [order 34]
%F k=5: [order 96]
%e Some solutions for n=4 k=4
%e ..0..0..1..1. .0..1..0..1. .1..1..0..1. .1..0..0..0. .1..0..1..1
%e ..0..1..1..0. .0..1..0..0. .1..1..0..1. .0..1..0..1. .1..1..1..0
%e ..1..0..1..0. .1..1..0..0. .1..0..1..0. .0..0..1..0. .0..1..0..0
%e ..1..1..0..0. .0..1..0..1. .1..1..0..1. .1..1..1..1. .0..0..0..0
%K nonn,tabl
%O 1,8
%A _R. H. Hardin_, Mar 02 2017