login
A283197
Number of n X 2 0..1 arrays with no 1 equal to more than two of its horizontal and vertical neighbors, with the exception of exactly one element.
2
0, 0, 6, 36, 176, 824, 3668, 15808, 66640, 276184, 1129482, 4570084, 18329920, 72981648, 288779688, 1136580576, 4452663936, 17372989712, 67541322638, 261743811012, 1011439313456, 3898369209992, 14990343112316, 57519762677984
OFFSET
1,3
COMMENTS
Column 2 of A283203.
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) - 5*a(n-2) - 8*a(n-3) - 18*a(n-4) - 4*a(n-5) + 6*a(n-6) + 8*a(n-7) + 3*a(n-8) - 2*a(n-9) - a(n-10).
Empirical g.f.: 2*x^3*(1 + x)*(3 - 3*x - 2*x^2) / (1 - 3*x - 2*x^2 - 2*x^3 + x^4 + x^5)^2. - Colin Barker, Mar 22 2018
EXAMPLE
Some solutions for n=4:
..1..0. .1..1. .0..0. .0..1. .1..0. .0..1. .0..1. .0..0. .0..0. .1..1
..0..1. .1..0. .0..1. .1..1. .1..1. .1..1. .1..0. .1..1. .1..1. .1..1
..1..1. .1..1. .1..1. .0..1. .1..0. .0..1. .1..1. .1..1. .1..1. .1..0
..0..1. .1..0. .1..1. .1..1. .1..1. .0..0. .1..0. .1..0. .0..1. .0..0
CROSSREFS
Cf. A283203.
Sequence in context: A132165 A200573 A224130 * A218265 A258629 A294465
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 02 2017
STATUS
approved