%I #4 Feb 23 2017 08:07:24
%S 24,251,2562,28537,305430,3303160,35681883,385325426,4161954773,
%T 44951001482,485498298665,5243663988955,56634643302008,
%U 611687335430349,6606581342036398,71354948595558587,770675234077575658
%N Number of nX5 0..1 arrays with no 1 equal to more than one of its horizontal, vertical and antidiagonal neighbors.
%C Column 5 of A282862.
%H R. H. Hardin, <a href="/A282859/b282859.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = a(n-1) +61*a(n-2) +358*a(n-3) +1113*a(n-4) +2413*a(n-5) +3379*a(n-6) +1124*a(n-7) -8938*a(n-8) -16081*a(n-9) -6340*a(n-10) +6638*a(n-11) +30086*a(n-12) +282342*a(n-13) -1039675*a(n-14) +1528537*a(n-15) -1806567*a(n-16) +2635369*a(n-17) -2835808*a(n-18) +2024657*a(n-19) -1772432*a(n-20) +1448395*a(n-21) -608689*a(n-22) +411486*a(n-23) -471618*a(n-24) +271632*a(n-25) -126978*a(n-26) +72574*a(n-27) -60803*a(n-28) +33770*a(n-29) +15733*a(n-30) -22027*a(n-31) +9196*a(n-32) -4582*a(n-33) +2225*a(n-34) -616*a(n-35) -99*a(n-36) +251*a(n-37) -83*a(n-38) +23*a(n-39) -32*a(n-40) +5*a(n-41) +a(n-43)
%e Some solutions for n=4
%e ..0..0..0..0..0. .1..0..0..1..1. .0..1..0..0..1. .1..0..0..0..1
%e ..1..0..0..1..1. .0..1..0..0..0. .1..0..1..0..0. .0..0..0..0..0
%e ..0..0..0..0..0. .0..0..0..0..0. .0..0..0..1..0. .1..0..0..1..0
%e ..0..1..1..0..0. .1..0..0..0..0. .0..0..1..0..1. .0..1..0..0..0
%Y Cf. A282862.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 23 2017